Đề bài
Tính giá trị của biểu thức \(M = {\left( {x + 2y} \right)^3} - 6{\left( {x + 2y} \right)^2} + 12\left( {x + 2y} \right) - 8\) tại\(x = 20;\,y = 1\) .
-
A.
\(4000\).
-
B.
\(6000\).
-
C.
\(8000\).
-
D.
\(2000\).
Phương pháp giải
Áp dụng hằng đẳng thức: \({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3}\) và phép nhân đa thức với đơn thức rồi tìm đưa về bài toán tìm \(x\) đã biết.
\(\begin{array}{l}M = {\left( {x + 2y} \right)^3} - 6{\left( {x + 2y} \right)^2} + 12\left( {x + 2y} \right) - 8\\\,\,\,\,\,\,\, = {\left( {x + 2y} \right)^3} - 3.{\left( {x + 2y} \right)^2}.2 + 3.\left( {x + 2y} \right){.2^2} - {2^3}\\\,\,\,\,\,\,\, = {\left( {x + 2y - 2} \right)^3}\end{array}\)
Thay \(x = 20;\,y = 1\) vào biểu thức \(M\) ta có \(M = {\left( {20 + 2.1 - 2} \right)^3} = {20^3} = 8000\).
Đáp án : C