Đề bài
Tính \(\mathop {\lim }\limits_{x \to 3} \frac{{\sqrt {x + 1} - 2}}{{9 - {x^2}}}\) bằng
-
A.
\( - \frac{1}{{24}}\)
-
B.
\( - \frac{1}{6}\)
-
C.
\(\frac{1}{6}\)
-
D.
\(\frac{1}{{24}}\)
Phương pháp giải
Nhận biết dạng vô định \(\frac{0}{0}\): Tính \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x)}}{{g(x)}}\)trong đó \(f(x{}_0) = g({x_0}) = 0\)
Khử dạng vô định \(\frac{0}{0}\): Phân tích tử thức và mẫu thức sao cho xuất hiện nhân tử chung \((x - {x_0})\)
\(\mathop {\lim }\limits_{x \to 3} \frac{{\sqrt {x + 1} - 2}}{{9 - {x^2}}} = \mathop {\lim }\limits_{x \to 3} \frac{{x - 3}}{{(\sqrt {x + 1} + 2)(9 - {x^2})}} = \mathop {\lim }\limits_{x \to 3} \frac{{ - 1}}{{(\sqrt {x + 1} + 2)(3 + x)}} = \frac{{ - 1}}{{24}}\)
Đáp án A.
Đáp án : A