Tính nhanh: 43^2 + 13^4 + 13^8 + 13^16 + 1 — Không quảng cáo

Tính nhanh \(4\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\left( {{3^{16}} + 1} \right)\)


Đề bài

Tính nhanh: \(4\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\left( {{3^{16}} + 1} \right)\)

Phương pháp giải

Đặt \(A = 4\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\left( {{3^{16}} + 1} \right)\).

Nhân cả hai vế với 2, ta được \(2A = 8\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\left( {{3^{16}} + 1} \right)\).

Biến đổi \(8 = {3^2} - 1\)

Áp dụng hằng đẳng thức hiệu hai bình phương để rút gọn \(2A\), từ đó suy ra A.

Đặt \(A = 4\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\left( {{3^{16}} + 1} \right)\).

Nhân cả hai vế với 2, ta được \(2A = 8\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\left( {{3^{16}} + 1} \right)\).

Ta có:

\(\begin{array}{l}2A = 8\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\left( {{3^{16}} + 1} \right)\\2A = \left( {{3^2} - 1} \right)\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\left( {{3^{16}} + 1} \right)\\2A = \left( {{3^4} - 1} \right)\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\left( {{3^{16}} + 1} \right)\\2A = \left( {{3^8} - 1} \right)\left( {{3^8} + 1} \right)\left( {{3^{16}} + 1} \right)\\2A = \left( {{3^{16}} - 1} \right)\left( {{3^{16}} + 1} \right)\\2A = {3^{32}} - 1\\A = \frac{{{3^{32}} - 1}}{2}\end{array}\)

Vậy \(4\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\left( {{3^{16}} + 1} \right) = \frac{{{3^{32}} - 1}}{2}\).