Đề bài
Tính tổng sau: \(S = 1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{{27}} + ... + {\left( {\frac{{ - 1}}{3}} \right)^{n - 1}} + ...\)
-
A.
\(S = \frac{1}{4}\) .
-
B.
\(S = \frac{1}{3}\).
-
C.
\(S = \frac{3}{4}\).
-
D.
\(S = \frac{2}{3}\).
Phương pháp giải
Sử dụng kiến thức về tổng cấp số nhân lùi vô hạn: Cấp số nhân lùi vô hạn \(\left( {{u_n}} \right)\) với công bội q, số hạng đầu \({u_1}\) thì có tổng là \(S = \frac{{{u_1}}}{{1 - q}}\).
Tổng trên là cấp số nhân lùi vô hạn có \({u_1} = 1,\) công bội \(q = \frac{{ - 1}}{3}\)
Do đó, \(S = \frac{1}{{1 - \left( {\frac{{ - 1}}{3}} \right)}} = \frac{3}{4}\)
Đáp án : C