Đề bài
Tọa độ tâm đối xứng của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 3}}\) là?
-
A.
(3;2)
-
B.
(-3;2)
-
C.
(-1;3)
-
D.
(1;-3)
Phương pháp giải
Tìm giao điểm hai đường tiệm cận của đồ thị hàm số.
Vậy tâm đối xứng của đồ thị có tọa độ (3;2).
Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } y = 2\) suy ra đuờng thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.
Ta có \(\mathop {\lim }\limits_{x \to {3^ + }} y = + \infty ;\) \(\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty \) suy ra đường thẳng x = 3 là tiệm cận đứng của đồ thị hàm số.
Vậy tâm đối xứng của đồ thị có tọa độ (3;2).
Đáp án : A