Đề bài
Trong các công thức dưới đây, công thức nào thể hiện y không phải là hàm số của x?
-
A.
\(y = x + 1\)
-
B.
\(y = \frac{1}{2}x\)
-
C.
\(y = {x^2}\)
-
D.
\({y^2} = x\)
Phương pháp giải
Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Xét công thức: \({y^2} = x\)
Với \(x = 4\) thì \({y^2} = 4\) nên \(y = 2\) hoặc \(y = - 2\)
Ta thấy với mỗi giá trị của x có tương ứng 2 giá trị của y nên \({y^2} = x\) không phải là hàm số của x.
Các công thức còn lại ta đều thấy với mỗi giá trị của x có duy nhất một giá trị tương ứng của y nên y là hàm số của x.
Đáp án : D