Trong các số: \(\dfrac{{ - 3}}{{70}};\dfrac{{212}}{{25}};\dfrac{{63}}{{30}}; - 3\dfrac{7}{{51}};\dfrac{{21}}{{1250}}\) , có bao nhiêu số viết được dưới dạng số thập phân vô hạn tuần hoàn?
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Bước 1: Đưa các số hữu tỉ về dạng phân số tối giản
Bước 2: Phân tích mẫu của các phân số thu được ở bước 1 ra thừa số nguyên tố.
+ Các phân số tối giản có mẫu số chỉ có các ước nguyên tố là 2 và 5 thì viết được dưới dạng số thập phân hữu hạn.
+ Các phân số tối giản có mẫu số chỉ có các ước nguyên tố khác 2 và 5 thì viết được dưới dạng số thập phân vô hạn tuần hoàn.
Ta thấy \(\dfrac{{63}}{{30}} = \dfrac{{21}}{{10}}\)
Ta có: 70 = 2.5.7;
25 = 5 2
10 = 2 . 5
51 = 3 . 17
1250 = 2 . 5 4
Như vậy, các số viết được dưới dạng số thập phân vô hạn tuần hoàn là: \(\dfrac{{ - 3}}{{70}}; - 3\dfrac{7}{{51}}\) ( vì mẫu số có ước nguyên tố khác 2 và 5)
Đáp án : B