Trong hình dưới đây, các tam giác nào đồng dạng với nhau là
-
A.
$\Delta DEF\backsim \Delta HIK$.
-
B.
$\Delta DEF\backsim \Delta MNP$.
-
C.
$\Delta HIK\backsim \Delta MNP$.
-
D.
Cả 3 tam giác đồng dạng.
Dựa vào các trường hợp đồng dạng của hai tam giác vuông.
Xét \(\Delta DEF\) và \(\Delta MNP\) có:
\(\begin{array}{l}\widehat D = \widehat M = {90^0}\\\frac{{DE}}{{MN}} = \frac{{EF}}{{NP}}\left( {\frac{8}{{12}} = \frac{{12}}{{18}}\left( { = \frac{2}{3}} \right)} \right)\end{array}\)
nên $\Delta DEF\backsim \Delta MNP$(cạnh huyền – cạnh góc vuông)
Áp dụng định lí Pythagore vào tam giác HIK có:
\(KI = \sqrt {{{18}^2} + {{24}^2}} = 30\)
Vì \(\frac{8}{{12}} = \frac{2}{3} \ne \frac{{18}}{{30}} = \frac{3}{5}\) nên \(\Delta DEF\) không đồng dạng với \(\Delta HIK\).
Điều này dẫn đến \(\Delta MNP\) không đồng dạng với \(\Delta HIK\)(vì $\Delta DEF\backsim \Delta MNP$)
Đáp án B.
Đáp án : B