Trong hình dưới đây, các tam giác nào đồng dạng với nhau — Không quảng cáo

Trong hình dưới đây, các tam giác nào đồng dạng với nhau là


Đề bài

Trong hình dưới đây, các tam giác nào đồng dạng với nhau là

  • A.
    $\Delta DEF\backsim \Delta HIK$.
  • B.
    $\Delta DEF\backsim \Delta MNP$.
  • C.
    $\Delta HIK\backsim \Delta MNP$.
  • D.
    Cả 3 tam giác đồng dạng.
Phương pháp giải

Dựa vào các trường hợp đồng dạng của hai tam giác vuông.

Xét \(\Delta DEF\) và \(\Delta MNP\) có:

\(\begin{array}{l}\widehat D = \widehat M = {90^0}\\\frac{{DE}}{{MN}} = \frac{{EF}}{{NP}}\left( {\frac{8}{{12}} = \frac{{12}}{{18}}\left( { = \frac{2}{3}} \right)} \right)\end{array}\)

nên $\Delta DEF\backsim \Delta MNP$(cạnh huyền – cạnh góc vuông)

Áp dụng định lí Pythagore vào tam giác HIK có:

\(KI = \sqrt {{{18}^2} + {{24}^2}}  = 30\)

Vì \(\frac{8}{{12}} = \frac{2}{3} \ne \frac{{18}}{{30}} = \frac{3}{5}\) nên \(\Delta DEF\) không đồng dạng với \(\Delta HIK\).

Điều này dẫn đến \(\Delta MNP\) không đồng dạng với \(\Delta HIK\)(vì $\Delta DEF\backsim \Delta MNP$)

Đáp án B.

Đáp án : B