Trong không gian Oxyz, cho hình bình hành ABCD. Biết A(1;0;1), B(2;1;2), và D(1;-1;1). Tọa độ điểm C là (a;b;c). Tính tổng a + b + c.
Đáp án:
Đáp án:
Sử dụng quy tắc hình bình hành.
Vì ABCD là hình bình hành nên \(\overrightarrow {DC} = \overrightarrow {AB} \).
Ta có: \(\overrightarrow {DC} = (a - 1;b + 1c - 1)\) và \(\overrightarrow {AB} = (1;1;1)\).
Suy ra \(\left\{ {\begin{array}{*{20}{c}}{a - 1 = 1}\\{b + 1 = 1}\\{c - 1 = 1}\end{array} \Leftrightarrow } \right.\left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = 0}\\{c = 2}\end{array}} \right.\)
Vậy \(a = 2,b = 0,c = 2\). Khi đó \(a + b + c = 2 + 0 + 2 = 4\).