Trong không gian Oxyz, cho vecto \(\overrightarrow a = (2;3;1)\), \(\overrightarrow b = ( - 1;5;2)\), \(\overrightarrow c = (4; - 1;3)\) và \(\overrightarrow x = ( - 3;22;5)\).
a) \(\left| {2\overrightarrow a } \right| = 14\)
b) \(\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {74} \)
c) \(3\overrightarrow a - 2\overrightarrow c = ( - 2;11; - 3)\)
d) \(\overrightarrow x = - 2\overrightarrow a - 3\overrightarrow b + \overrightarrow c \)
a) \(\left| {2\overrightarrow a } \right| = 14\)
b) \(\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {74} \)
c) \(3\overrightarrow a - 2\overrightarrow c = ( - 2;11; - 3)\)
d) \(\overrightarrow x = - 2\overrightarrow a - 3\overrightarrow b + \overrightarrow c \)
Sử dụng các quy tắc cộng vecto, công thức tính tích vô hướng của hai vecto, độ dài vecto.
a) Sai . Vì \(\left| {2\overrightarrow a } \right| = \sqrt {{4^2} + {6^2} + {2^2}} = 2\sqrt {14} \).
b) Đúng. Vì \(\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{1^2} + {8^2} + {3^2}} = \sqrt {74} \).
c) Đúng . Vì \(3\overrightarrow a - 2\overrightarrow c = (6;9;3) - (8; - 2;6) = ( - 2;11; - 3)\)
d) Sai. Đặt \(\overrightarrow x = m\overrightarrow a + n\overrightarrow b + p\overrightarrow c \) với \(m,n,p \in R\).
Suy ra \(( - 3;22;5) = m(2;3;1) + n( - 1;5;2) + p(;4; - 1;3) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2m - n + 4p = - 3}\\{3m + 5n - p = 22}\\{m + 2n + 3p = 5}\end{array}} \right.\)
Giải hệ trên ta được m = 2, n = 3, p = -1. Vậy \(\overrightarrow x = 2\overrightarrow a + 3\overrightarrow b - \overrightarrow c \).