Trong không gian Oxyz, cho vecto \(\overrightarrow c = (3;4;0)\), \(\overrightarrow b = (1; - 2;2)\).
a) \(\left| {\overrightarrow a } \right| = 5\)
b) \(\overrightarrow c + \overrightarrow d = (4;2;2)\)
c) \(\overrightarrow c .\overrightarrow d = 1\)
d) Góc giữa hai vecto \(\overrightarrow c ,\overrightarrow d \) bằng \({90^o}\)
a) \(\left| {\overrightarrow a } \right| = 5\)
b) \(\overrightarrow c + \overrightarrow d = (4;2;2)\)
c) \(\overrightarrow c .\overrightarrow d = 1\)
d) Góc giữa hai vecto \(\overrightarrow c ,\overrightarrow d \) bằng \({90^o}\)
Sử dụng các quy tắc cộng vecto, công thức tính tích vô hướng của hai vecto, độ dài vecto, góc giữa hai vecto.
a) Đúng. Vì \(\left| {\overrightarrow a } \right| = \sqrt {{3^2} + {4^2} + {0^2}} = 5\).
b) Đúng. Vì \(\overrightarrow a + \overrightarrow b = (3 + 1;4 - 2;0 + 2) = (4;2;2)\).
c) Sai. Vì \(\overrightarrow a .\overrightarrow b = 3.1 + 4.( - 2) + 0.2 = - 5\) .
d) Sai. Vì \(\cos \left( {\overrightarrow c ,\overrightarrow d } \right) = \frac{{\overrightarrow c .\overrightarrow d }}{{\left| {\overrightarrow c } \right|.\left| {\overrightarrow d } \right|}} = \frac{{ - 5}}{{\sqrt {{3^2} + {4^2} + {0^2}} .\sqrt {{1^2} + {{( - 2)}^2} + {2^2}} }} = \frac{{ - 1}}{3}\) nên góc giữa hai vecto \(\overrightarrow c ,\overrightarrow d \) bằng xấp xỉ \({109^o}\).