Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A’B’C’D’. Biết A(2;4;0), B(4;0;0), C(-1;4;-7) và D’(6;8;10). Tổng hoành độ, tung độ, cao độ của điểm B’ bằng bao nhiêu?
Đáp án:
Đáp án:
Tìm giao điểm O của AC và BD, từ đó tìm được D. Thông qua \(\overrightarrow {BB'} = \overrightarrow {DD'} \) ta tìm được tọa độ B’.
Giả sử D(a;b;c), B’(a’;b’;c’). Gọi O là giao điểm của AC và BD, suy ra O là trung điểm của AC.
Từ đó, ta tính được tọa độ điểm O\(\left( {\frac{1}{2};4;\frac{{ - 7}}{2}} \right)\).
Vì O là trung điểm của BD nên từ B(4;0;0) ta tìm được D(-3;8;-7).
Vậy, \(\overrightarrow {DD'} = (9;0;17)\). Mà ABCD.A’B’C’D’ là hình hộp nên \(\overrightarrow {BB'} = \overrightarrow {DD'} = (9;0;17)\).
Mà \(\overrightarrow {BB'} = (a' - 4;b';c')\), suy ra a’ = 13, b’ = 0, c’ = 17.
Vậy B’(13;0;17). Tổng hoành độ, tung độ, cao độ của điểm B’ bằng 13 + 0 + 17 = 30.