Đề bài
Trong tam giác ABC với BC = a, AC = b, AB = c và R là bán kính đường tròn ngoại tiếp tam giác ABC. Hệ thức nào sau đây đúng?
-
A.
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = R\)
-
B.
\(\frac{a}{{\cos A}} = \frac{b}{{\cos B}} = \frac{c}{{\cos C}} = R\)
-
C.
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)
-
D.
\(\frac{a}{{\cos A}} = \frac{b}{{\cos B}} = \frac{c}{{\cos C}} = 2R\)
Phương pháp giải
Dựa vào định lí Sin trong tam giác.
Trong tam giác ABC với BC = a, AC = b, AB = c và R là bán kính đường tròn ngoại tiếp tam giác ABC, ta có \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\).
Đáp án : C