Tứ giác ABCD có AB = BC; CD = DA , \(\widehat B = {100^o};\widehat D = {70^o}\) . Tính \(\widehat A{,^{}}\widehat C\) ?
-
A.
\(\widehat A = \widehat C = {95^o}\)
-
B.
\(\widehat A = {95^o};\widehat C = {55^o}\)
-
C.
\(\widehat A = \widehat C = {85^o}\)
-
D.
\(\widehat A = {55^o};\widehat C = {100^o}\)
Xét tam giác ABC có AB = AC
\( \Rightarrow \Delta ABC\) cân tại B mà \(\widehat B = {100^o}\)
\( \Rightarrow \widehat {BAC} = \widehat {BCA} = \frac{{{{180}^o} - {{100}^o}}}{2} = {40^o}\)
Xét tam giác ADC có CD = DA
\( \Rightarrow \Delta A{{D}}C\) cân tại D có \(\widehat {A{{D}}C} = {70^o}\)
\( \Rightarrow \widehat {DAC} = \widehat {DCA} = \frac{{{{180}^o} - {{70}^o}}}{2} = {55^o}\)
Từ đó ta có:
\(\begin{array}{l}\widehat A = \widehat {BA{{D}}} = \widehat {BAC} + \widehat {CA{{D}}}\\ \Rightarrow \widehat A = \widehat {BA{{D}}} = {40^o} + {55^o} = {95^o}\end{array}\)
Và: \(\begin{array}{l}\widehat C = \widehat {BC{{D}}} = \widehat {BCA} + \widehat {AC{{D}}}\\ \Rightarrow \widehat C = \widehat {BC{{D}}} = {40^o} + {55^o} = {95^o}\end{array}\)
Vậy: \(\widehat A = \widehat C = {95^o}\)
Đáp án : A