Vẽ góc \(xOy\) có số đo bằng 125 o . Vẽ góc \(x'Oy'\) đối đỉnh với góc \(xOy.\) Viết tên các góc có số đo bằng 55 o .
-
A.
\(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy'}\)
-
B.
\(\widehat {xOy}\,\,;\,\,\widehat {x'Oy'}\)
-
C.
\(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)
-
D.
\(\widehat {xOy'}\,\,;\,\,\widehat {xOy}\)
+ Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)
+ Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau
Vì hai đường thẳng \(xx'\) và \(yy'\) cắt nhau tại \(O\) nên \(Ox'\) là tia đối của tia \(Ox;Oy'\) là tia đối của tia \(Oy.\)
Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.
Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 125^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)
Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc ở vị trí kề bù nên
\(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)
\( \Rightarrow 125^\circ + \widehat {x'Oy} = 180^\circ \Rightarrow \widehat {x'Oy} = 180^\circ - 125^\circ = 55^\circ \)
Hai góc có số đo bằng 55 o là : \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)
Đáp án : C