Viết biểu thức sau dưới dạng tích: \(A = {(3 - x)^3} + {(x - y)^3} + {(y - 3)^3}\)
-
A.
\(A = 3\).
-
B.
\(A = (3 - x)(x - y)(y - 3)\).
-
C.
\(A = 6(3 - x)(x - y)(y - 3)\).
-
D.
\(A = 3(3 - x)(x - y)(y - 3)\).
Ta thấy a + b + c = 0 nên \({a^3} + {b^3} + {c^3} = 3abc\) .
\(\begin{array}{l}\;{(a + b)^3}\; = {a^3}\; + 3{a^2}b + 3a{b^2}\; + {b^3}\; = {a^3}\; + {b^3}\; + 3ab\left( {a + b} \right)\\ \Rightarrow {a^3}\; + {b^3}\; = {\left( {a + b} \right)^3}\;-3ab\left( {a + b} \right)\end{array}\)
Ta có:
\(\begin{array}{c}\;B = {a^3}\; + {b^3}\; + {c^3}\;-3abc\;\\ = {(a + b)^3} - 3ab(a + b) + {c^3} - 3abc\\ = {(a + b)^3} + {c^3} - 3ab(a + b + c)\end{array}\)
Tương tự, ta có \({(a + b + c)^3} - 3(a + b)c(a + b + c)\)
\( \Rightarrow B = {(a + b + c)^3} - 3(a + b)c(a + b + c) - 3ab(a + b + c)\)
Mà \(\;a + b + c = 0\) nên \(\;B = 0 - 3(a + b)c.0 - 3ab.0 = 0\)
Đáp án : D