Với điều kiện nào của x thì hai phân thức 2 - 2x/x^3 - 1 — Không quảng cáo

Với điều kiện nào của \(x\) thì hai phân thức \(\frac{{2 - 2x}}{{{x^3} - 1}}\) và \(\frac{{2x + 2}}{{{x^2} + x + 1}}\) bằng nhau


Đề bài

Với điều kiện nào của \(x\) thì hai phân thức \(\frac{{2 - 2x}}{{{x^3} - 1}}\) và \(\frac{{2x + 2}}{{{x^2} + x + 1}}\) bằng nhau?

  • A.
    \(x = 2\)
  • B.
    \(x \ne 1\)
  • C.
    \(x =  - 2\)
  • D.
    \(x =  - 1\)
Phương pháp giải

Tìm điều kiện xác định của phân thức: Điều kiện xác định của phân thức \(\frac{A}{B}\) là điều kiện của biến để giá trị của mẫu thức \(B\) khác 0.

Dựa vào định nghĩa hai phân thức bằng nhau: Hai phân thức \(\frac{A}{B}\) và \(\frac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Điều kiện:

\(\begin{array}{l}\left\{ \begin{array}{l}{x^3} - 1 \ne 0\\{x^2} + x + 1 \ne 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) \ne 0\\{\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} \ne 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\{\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} \ne 0\,\left( {\forall x} \right)\end{array} \right.\\ \Leftrightarrow x \ne 1\end{array}\)

Ta có: \(\frac{{2 - 2x}}{{{x^3} - 1}} = \frac{{ - 2\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{ - 2\left( {x - 1} \right):\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right):\left( {x - 1} \right)}} = \frac{{ - 2}}{{{x^2} + x + 1}};\)

\(\frac{{2 - 2x}}{{{x^3} - 1}} = \frac{{2x + 2}}{{{x^2} + x + 1}} \Leftrightarrow \frac{{ - 2}}{{{x^2} + x + 1}} = \frac{{2x + 2}}{{{x^2} + x + 1}} \Leftrightarrow  - 2 = 2x + 2 \Leftrightarrow x =  - 2\)

Đáp án : C