Với hàm số g x = 2x + 12 - 3x^2/x - 1;,g' 2 — Không quảng cáo

Với hàm số \(g\left( x \right) = \frac{{\left( {2x + 1} \right){{\left( {2 - 3x} \right)}^2}}}{{x - 1}} \,g'\left( 2 \right)\)bằng


Đề bài

Với hàm số \(g\left( x \right) = \frac{{\left( {2x + 1} \right){{\left( {2 - 3x} \right)}^2}}}{{x - 1}};\,g'\left( 2 \right)\)bằng

  • A.
    232.
  • B.
    72.
  • C.
    152.
  • D.
    -75.
Phương pháp giải

Sử dụng phương tính đạo hàm của hàm hợp

\(\begin{array}{l}g'\left( x \right) = \left[ {\frac{{\left( {2x + 1} \right){{\left( {2 - 3x} \right)}^2}}}{{x - 1}}} \right]' = \left( {\frac{{18{x^3} - 15{x^2} - 4x + 4}}{{x - 1}}} \right)'\\ = \frac{{\left( {18{x^3} - 15{x^2} - 4x + 4} \right)'(x - 1) - (18{x^3} - 15{x^2} - 4x + 4)(x - 1)'}}{{{{\left( {x - 1} \right)}^2}}}\\ = \frac{{36{x^3} - 69{x^2} + 30x}}{{{{\left( {x - 1} \right)}^2}}}\\g'\left( 2 \right) = 72\end{array}\)

Đáp án B.

Đáp án : B