Đề bài
Với \(m = - 1\) thì phương trình \(\left( {2{m^2} - 2} \right)x = m + 1\)
-
A.
vô nghiệm.
-
B.
vô số nghiệm.
-
C.
có nghiệm duy nhất là \(x = m - 1\).
-
D.
Có 1 nghiệm là \(x = \frac{1}{{m - 1}}\).
Phương pháp giải
Thay m vào phương trình, đưa phương trình về dạng ax + b = 0 để giải.
Thay \(m = - 1\) vào phương trình \(\left( {2{m^2} - 2} \right)x = m + 1\), ta có:
\(\begin{array}{l}\left[ {2{{\left( { - 1} \right)}^2} - 2} \right]x = - 1 + 1\\\left( {2 - 2} \right)x = 0\end{array}\)
\(0.x = 0\) (luôn đúng).
Vậy phương trình có vô số nghiệm.
Đáp án B.
Đáp án : B