Đề bài
Với mọi a, b, c thỏa mãn a + b + c = 0 thì giá trị của biểu thức \({a^3} + {b^3} + {c^3} - 3abc\) là:
-
A.
\(0\).
-
B.
\(1\).
-
C.
\( - 3abc\).
-
D.
\({a^3} + {b^3} + {c^3}\)
Phương pháp giải
Sử dụng các hằng đẳng thức:\({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3};{A^3} + {B^3} = (A + B)\left( {{A^2} - AB + {B^2}} \right)\) để phân tích biểu thức
\(\begin{array}{l}{a^3} + {b^3} + {c^3} - 3abc\\ = {(a + b)^3} - 3ab(a + b) + {c^3} - 3abc\\ = {(a + b)^3} + {c^3} - 3ab(a + b + c)\\ = (a + b + c)\left[ {{{\left( {a + b} \right)}^2} - (a + b)c + {c^2}} \right] - 3ab(a + b + c)\\ = (a + b + c)\left( {{a^2} + 2ab + {b^2} - ac - bc + {c^2} - 3ab} \right)\\ = (a + b + c)({a^2} + {b^2} + {c^2} - ab - ac - bc)\end{array}\)
Vì a + b + c = 0 => \({a^3} + {b^3} + {c^3} - 3abc = 0\).
* Như vậy, với a + b + c = 0, ta có: \({a^3} + {b^3} + {c^3} = 3abc\) .
Đáp án : A