Với mọi số tự nhiên n >= 2 ta luôn — Không quảng cáo

Với mọi số tự nhiên \(n \ge 2\) ta luôn có


Đề bài

Với mọi số tự nhiên \(n \ge 2\) ta luôn có:

  • A.
    \(\left( {1 - \frac{2}{6}} \right)\left( {1 - \frac{2}{{12}}} \right) \cdot  \cdot  \cdot \left[ {1 - \frac{2}{{n\left( {n + 1} \right)}}} \right] > 3\)
  • B.
    \(\left( {1 - \frac{2}{6}} \right)\left( {1 - \frac{2}{{12}}} \right) \cdot  \cdot  \cdot \left[ {1 - \frac{2}{{n\left( {n + 1} \right)}}} \right] < 0\)
  • C.
    \(\left( {1 - \frac{2}{6}} \right)\left( {1 - \frac{2}{{12}}} \right) \cdot  \cdot  \cdot \left[ {1 - \frac{2}{{n\left( {n + 1} \right)}}} \right] > \frac{1}{3}\)
  • D.
    \(\left( {1 - \frac{2}{6}} \right)\left( {1 - \frac{2}{{12}}} \right) \cdot  \cdot  \cdot \left[ {1 - \frac{2}{{n\left( {n + 1} \right)}}} \right] <  - \frac{1}{3}\)
Phương pháp giải

Sử dụng công thức: \(1 - \frac{2}{{n\left( {n + 1} \right)}} = \frac{{\left( {n - 1} \right)\left( {n + 2} \right)}}{{n\left( {n + 1} \right)}}\)

Ta có: \(1 - \frac{2}{{n\left( {n + 1} \right)}} = \frac{{{n^2} + n - 2}}{{n\left( {n + 1} \right)}} = \frac{{{n^2} + 2n - n - 2}}{{n\left( {n + 1} \right)}} = \frac{{n\left( {n + 2} \right) - \left( {n + 2} \right)}}{{n\left( {n + 1} \right)}} = \frac{{\left( {n - 1} \right)\left( {n + 2} \right)}}{{n\left( {n + 1} \right)}}\)\(\begin{array}{l}\left( {1 - \frac{2}{6}} \right)\left( {1 - \frac{2}{{12}}} \right) \cdot  \cdot  \cdot \left[ {1 - \frac{2}{{n\left( {n + 1} \right)}}} \right] = \frac{{1.4}}{{2.3}} \cdot \frac{{2.5}}{{3.4}} \cdot \frac{{3.6}}{{4.5}} \cdot  \cdot  \cdot \frac{{\left( {n - 1} \right)\left( {n + 2} \right)}}{{n\left( {n + 1} \right)}}\\ = \frac{{1.2.3...\left( {n - 1} \right)}}{{2.3.4...n}} \cdot \frac{{4.5.6...\left( {n + 2} \right)}}{{3.4.5...\left( {n + 1} \right)}} = \frac{1}{n} \cdot \frac{{n + 2}}{3} = \frac{{n + 2}}{{3n}}\\ = \frac{1}{3}\left( {\frac{{n + 2}}{n}} \right) = \frac{1}{3}\left( {1 + \frac{2}{n}} \right) > \frac{1}{3}\left( {1 + 0} \right) = \frac{1}{3}\left( {0 < \frac{2}{n} \le 1\forall n \ge 2} \right)\end{array}\)

Đáp án : C