Xác định hằng số a và b sao cho x^4 + ax + b vdots x^2 — Không quảng cáo

Xác định hằng số \(a\) và \(b\) sao cho \(\left( {{x^4} + ax + b} \right) \vdots \left( {{x^2} - 4} \right)\)


Đề bài

Xác định hằng số \(a\) và \(b\) sao cho \(\left( {{x^4} + ax + b} \right) \vdots \left( {{x^2} - 4} \right)\):

  • A.

    \(a = 0\) và \(b =  - 16\)

  • B.

    \(a = 0\) và \(b = 16\)

  • C.

    \(a = 0\) và \(b = 0\)

  • D.

    \(a = 1\) và \(b = 1\)

Phương pháp giải

+) Chia đa thức cho đa thức: Muốn chia đa thức A cho đa thức B, ta làm như sau:

Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của A chia cho hạng tử bậc cao nhất của B.

Bước 2: Lấy A trừ đi tích của B với thương mới thu được ở bước 1

Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của B

Bước 4: Lấy dư thứ nhất trừ đi tích B với thương vừa thu được ở bước 3

Bước 5: Làm tương tự như trên

Đến khi dư cuối cùng có bậc nhỏ hơn bậc của B thì quá trình chia kết thúc.

+) Biện luận để \(\left( {{x^4} + ax + b} \right) \vdots \left( {{x^2} - 4} \right)\) thì dư  = 0, tìm a,b

Để \({x^4} + ax + b\) chia hết cho \({x^2} - 4\) thì \(ax + b + 16 = 0 \Leftrightarrow \left\{ \begin{array}{l}ax = 0\\b + 16 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b =  - 16\end{array} \right.\)

Đáp án : A