Xác định hằng số \(a\) và \(b\) sao cho \(\left( {{x^4} + ax + b} \right) \vdots \left( {{x^2} - 4} \right)\):
-
A.
\(a = 0\) và \(b = - 16\)
-
B.
\(a = 0\) và \(b = 16\)
-
C.
\(a = 0\) và \(b = 0\)
-
D.
\(a = 1\) và \(b = 1\)
+) Chia đa thức cho đa thức: Muốn chia đa thức A cho đa thức B, ta làm như sau:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của A chia cho hạng tử bậc cao nhất của B.
Bước 2: Lấy A trừ đi tích của B với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của B
Bước 4: Lấy dư thứ nhất trừ đi tích B với thương vừa thu được ở bước 3
Bước 5: Làm tương tự như trên
Đến khi dư cuối cùng có bậc nhỏ hơn bậc của B thì quá trình chia kết thúc.
+) Biện luận để \(\left( {{x^4} + ax + b} \right) \vdots \left( {{x^2} - 4} \right)\) thì dư = 0, tìm a,b
Để \({x^4} + ax + b\) chia hết cho \({x^2} - 4\) thì \(ax + b + 16 = 0 \Leftrightarrow \left\{ \begin{array}{l}ax = 0\\b + 16 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = - 16\end{array} \right.\)
Đáp án : A