Đề khảo sát chất lượng đầu năm Toán 10 Chân trời sáng tạo - Đề số 2
Đề bài
Cho đường thẳng \(d\):\(y = - kx + b\,\,\left( {k \ne 0} \right)\). Hệ số góc của đường thẳng \(d\) là
-
A.
\( - k\)
-
B.
\(k\)
-
C.
\(\dfrac{1}{k}\)
-
D.
\(b\)
Cho hàm số \(y = \left( {1 - \sqrt {m - 1} } \right){x^2}.\) Hàm số đã cho đồng biến khi \(x < 0\) nếu:
-
A.
\(m < 0\)
-
B.
\(m > 1\)
-
C.
\(m > 2\)
-
D.
\(m \in \emptyset \)
Cho hai đường tròn \(\left( {O;6\,cm} \right)\) và \(\left( {O';2\,cm} \right)\) cắt nhau tại \(A,B\) sao cho \(OA\) là tiếp tuyến của \(\left( {O'} \right)\). Độ dài dây \(AB\) là
-
A.
\(AB = 3\sqrt {10} \,cm\)
-
B.
\(AB = \dfrac{{6\sqrt {10} }}{5}\,cm\)
-
C.
\(AB = \dfrac{{3\sqrt {10} }}{5}\,cm\)
-
D.
\(AB = \dfrac{{\sqrt {10} }}{5}\,cm\)
Cho tam giác \(ABC\) vuông tại \(A\) có cạnh \(AB = 6cm\) và \(AC = 8cm\) . Các phân giác trong và ngoài của góc \(B\) cắt đường thẳng \(AC\) lần lượt tại \(M\) và \(N\). Tính các đoạn thẳng \(AM\) và \(AN\).
-
A.
\(AM = 3cm\,\,;\,\,\,AN = 9cm\)
-
B.
\(AM = 2cm\,\,;\,\,\,AN = 18cm\)
-
C.
\(AM = 4cm\,\,;\,\,\,AN = 9cm\)
-
D.
\(AM = 3cm\,\,;\,\,\,AN = 12cm\)
Cho hình trụ có bán kính đáy \(R = 12\,cm\) và diện tích toàn phần \(672\pi \)\(c{m^2}\) . Tính chiều cao của hình trụ.
-
A.
\(16\,cm\)
-
B.
\(18\,cm\)
-
C.
\(8\,cm\)
-
D.
\(20\,cm\)
Giải hệ phương trình: \(\left\{ \begin{array}{l}\dfrac{1}{{x - 2}} + \dfrac{4}{{3y + 1}} = 5\\\dfrac{2}{{x - 2}} - \dfrac{4}{{3y + 1}} = - 2\end{array} \right.\)
-
A.
\(\left( {x;y} \right) = \left( {3;0} \right).\)
-
B.
\(\left( {x;y} \right) = \left( {1;1} \right).\)
-
C.
\(\left( {x;y} \right) = \left( {1;2} \right).\)
-
D.
\(\left( {x;y} \right) = \left( {1; - 1} \right).\)
Rút gọn biểu thức \(\sqrt {9{{\left( { - a} \right)}^2}.{{\left( {3 - 4a} \right)}^6}} \) với \(a \ge \dfrac{3}{4}\) ta được:
-
A.
\(3a{\left( {4a - 3} \right)^3}\)
-
B.
\( - 3a{\left( {4a - 3} \right)^3}\)
-
C.
\(3a\left( {4a - 3} \right)\)
-
D.
\(3a{\left( {3 - 4a} \right)^3}\)
Cho \(x,y\) là các số tự nhiên thỏa mãn điều kiện \(\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 2.\) Tính giá trị của biểu thức \(Q = x\sqrt {{y^2} + 1} + y\sqrt {{x^2} + 1} .\)
-
A.
\(Q = - \dfrac{3}{4}\)
-
B.
\(Q = \dfrac{4}{3}\)
-
C.
\(Q = - \dfrac{4}{3}\)
-
D.
\(Q = \dfrac{3}{4}\)
Cho hình cầu có bán kính \(5\,cm\). Một hình nón cũng có bán kính đáy bằng \(5\,cm\) và có diện tích toàn phần bằng diện tích mặt cầu. Tính chiều cao của hình nón.
-
A.
\(20\)
-
B.
\(10\)
-
C.
\(10\sqrt 2 \)
-
D.
\(2\sqrt {10} \)
Cho hai đường tròn \(\left( {O;4cm} \right)\) và \(\left( {O';3cm} \right)\) biết \(OO' = 5cm\). Hai đường tròn trên cắt nhau tại \(A\) và \(B\). Độ dài \(AB\) là:
-
A.
\(2,4cm\)
-
B.
\(4,8cm\)
-
C.
\(\dfrac{5}{{12}}cm\)
-
D.
\(5cm\)
Cho tam giác \(ABC\) có các đường cao \(BD,CE\) . Chọn khẳng định đúng.
-
A.
Bốn điểm \(B,E,D,C\) cùng nằm trên một đường tròn
-
B.
Năm điểm \(A,B,E,D,C\) cùng nằm trên một đường tròn
-
C.
Cả A, B đều sai
-
D.
Cả A, B đều đúng
Cho hai đường thẳng \(\left( {{d_1}} \right):y = 2x - 3\) và \(\left( {{d_2}} \right):y = - \dfrac{1}{2}x + 2\)
Tìm \(m\) để ba đường thẳng \(\left( {{d_1}} \right)\), \(\left( {{d_2}} \right)\) và \(\left( {{d_3}} \right):y = 3x - 2m - 3\) đồng quy.
-
A.
\(m=1\)
-
B.
\(m=2\)
-
C.
\(m=3\)
-
D.
\(m=-1\)
Cho hình nón có chiều cao \(h = 24cm\) và thể tích \(V = 800\pi \,\left( {c{m^3}} \right)\) . Tính diện tích toàn phần của hình nón.
-
A.
\(160\pi \,\left( {c{m^2}} \right)\)
-
B.
\(260\pi \,\left( {c{m^2}} \right)\)
-
C.
\(300\pi \,\left( {c{m^2}} \right)\)
-
D.
\(360\pi \,\left( {c{m^2}} \right)\)
Tính chiều cao của cây trong hình vẽ bên (Làm tròn đến chữ số thập phân thứ nhất)
-
A.
\(14,3m\)
-
B.
\(15,7m\)
-
C.
\(16,8m\)
-
D.
\(17,2m\)
Cho tam giác \(MNP\) có \(MN = 5cm,NP = 12cm,MP = 13cm\). Vẽ đường tròn \(\left( {M;NM} \right)\). Khẳng định nào sau đây là đúng?
-
A.
\(NP\) là tiếp tuyến của \(\left( {M;MN} \right)\)
-
B.
\(MP\) là tiếp tuyến của \(\left( {M;MN} \right)\)
-
C.
\(\Delta MNP\) vuông tại \(M\)
-
D.
\(\Delta MNP\) vuông tại \(P\)
Cho (P): \(y = {x^2}\) và đường thẳng \(d':y = 2x + 1\). Phương trình đường thẳng d // d’ và d tiếp xúc (P) là:
-
A.
y = 2x - 1
-
B.
y = 2x + 1
-
C.
y = - 2x - 1
-
D.
Đáp án khác
Cho phương trình \(a{x^2} + bx + c = 0\,\,(a \ne 0)\) có biệt thức \(b = 2b';\Delta ' = b{'^2} - ac\). Phương trình đã cho vô nghiệm khi
-
A.
\(\Delta ' > 0\)
-
B.
\(\Delta ' = 0\)
-
C.
\(\Delta ' \ge 0\)
-
D.
\(\Delta ' < 0\)
Rút gọn rồi tính giá trị của biểu thức \(Q = \dfrac{{2x - 3\sqrt x - 2}}{{\sqrt x - 2}}\) tại \(x = 2020 - 2\sqrt {2019} \)
-
A.
\(Q = 2\sqrt x + 1\,\,\,;\,\,\,2\sqrt {2019} - 1\)
-
B.
\(Q = 2\sqrt x - 1\,\,\,;\,\,\,2\sqrt {2019} - 3\)
-
C.
\(Q = \sqrt x - 2\,\,\,;\,\,\,\sqrt {2019} - 3\)
-
D.
\(Q = \sqrt x + 2\,\,\,;\,\,\,\sqrt {2019} + 1\)
Không dùng bảng số và máy tính, hãy so sánh \(\cot 50^\circ \) và \(\cot 46^\circ \)
-
A.
\(\cot 46^\circ = \cot 50^\circ \)
-
B.
\(\cot 46^\circ > \cot 50^\circ \)
-
C.
\(\cot 46^\circ < \cot 50^\circ \)
-
D.
\(\cot 46^\circ \ge \cot 50^\circ \)
Một người đi xe máy từ A đến B với vận tốc trung bình 30km/giờ. Khi đi được 1 giờ thì xe bị hỏng, người đó phải dừng lại để sửa xe mất 10 phút. Sau khi sửa xong người đó đi tiếp tới B, để đến B đúng giờ đã định người đó phải tăng vận tốc thêm 6km/h. Tính độ dài quãng đường AB.
-
A.
\(60\,km\)
-
B.
\(120\,km\)
-
C.
\(90\,km\)
-
D.
\(150\,km\)
Hai số \(u = m;v = 1 - m\) là nghiệm của phương trình nào dưới đây?
-
A.
\({x^2} - x + m\left( {1 - m} \right) = 0\)
-
B.
\({x^2} + m\left( {1 - m} \right)x - 1 = 0\)
-
C.
\({x^2} + x - m\left( {1 - m} \right) = 0\)
-
D.
\({x^2} - m\left( {1 - m} \right)x - 1 = 0\)
Kết quả phân tích đa thức \({x^2} + xy-x-y\;\) thành nhân tử là:
-
A.
\(\left( {x + y} \right)\left( {x-1} \right)\)
-
B.
\(\left( {x + y} \right)\left( {x + 1} \right)\;\;\)
-
C.
\(\left( {x-y} \right)\left( {x-1} \right)\)
-
D.
\(\left( {x-y} \right)\left( {x + 1} \right)\)
Cho tam giác \(ABC\) vuông tại \(C\) có \(AC = 1\,cm,\,\,BC = 2\,cm.\) Tính các tỉ số lượng giác \(\sin B;\cos B\)
-
A.
\(\sin B = \dfrac{1}{{\sqrt 3 }};\cos B = \dfrac{{2\sqrt 3 }}{3}\)
-
B.
\(\sin B = \dfrac{{\sqrt 5 }}{5};\cos B = \dfrac{{2\sqrt 5 }}{5}\)
-
C.
\(\sin B = \dfrac{1}{2};\cos B = \dfrac{2}{{\sqrt 5 }}\)
-
D.
\(\sin B = \dfrac{{2\sqrt 5 }}{5};\cos B = \dfrac{{\sqrt 5 }}{5}\)
Cho \(\Delta ABC\) đồng dạng với \(\Delta A'B'C'\) theo tỉ số \(\dfrac{3}{5}\) và chu vi của \(\Delta A'B'C'\) là $60cm.$ Khi đó chu vi \(\Delta ABC\) là:
-
A.
\(20\,cm\)
-
B.
\(24\,cm\)
-
C.
\(36\,cm\)
-
D.
\(30\,cm\)
Chọn khẳng định đúng. Nếu phương trình \(a{x^2} = mx + n\) có hai nghiệm phân biệt thì đường thẳng \(d:y = mx + n\) và parabol \(\left( P \right):y = a{x^2}\)
-
A.
Cắt nhau tại hai điểm phân biệt
-
B.
Tiếp xúc với nhau
-
C.
Không cắt nhau
-
D.
Cắt nhau tại gốc tọa độ
Nếu \(\Delta ABC\) vuông tại A có \(BH = 9,HC = 25\) thì đường cao \(AH\) có độ dài là:
-
A.
\(15\)
-
B.
\(225\)
-
C.
\(\sqrt {15} \)
-
D.
\(\dfrac{{25}}{9}\)
Đưa thừa số \(5x\sqrt {\dfrac{{ - 12}}{{{x^3}}}} \) (\(x < 0\)) vào trong dấu căn ta được:
-
A.
\(\sqrt {\dfrac{{300}}{x}} \)
-
B.
\(\sqrt {\dfrac{{ - 300}}{x}} \)
-
C.
\( - \sqrt {\dfrac{{ - 300}}{x}} \)
-
D.
\( - \sqrt {\dfrac{{ - 60}}{x}} \)
Giải phương trình \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{{1 - x}}{{2 - x}} = \dfrac{{2({x^2} + 2)}}{{{x^2} - 4}}\) ta được tập nghiệm là:
-
A.
\(S = \left\{ 0 \right\}\)
-
B.
\(S = \left\{ {0; - 2} \right\}\)
-
C.
\(S = \left\{ {0;2} \right\}\)
-
D.
\(S = \left\{ { - 2} \right\}\)
Thu gọn $\sqrt[3]{{ - \dfrac{1}{{27{a^3}}}}}$ với $a \ne 0$ ta được
-
A.
$\dfrac{1}{{3a}}$
-
B.
$\dfrac{1}{{4a}}$
-
C.
$ - \dfrac{1}{{3a}}$
-
D.
$ - \dfrac{1}{{8a}}$
Không tính cụ thể, bất đẳng thức nào sau đây là bất đẳng thức sai ?
-
A.
\( - 2.3 \ge - 6\)
-
B.
\(2.( - 3) \le 3.( - 3)\)
-
C.
\(2 + ( - 5) > ( - 5) + 1\)
-
D.
\(2.( - 4) - 3 > 2.( - 4) - 4\)
Giá trị của biểu thức \(\sqrt {17 - 12\sqrt 2 } + \sqrt {9 + 4\sqrt 2 } \).
-
A.
\(3 + 4\sqrt 2 \)
-
B.
\(4\)
-
C.
\(2\)
-
D.
\(4\sqrt 2 \)
Tìm hệ số góc của đường thẳng \(d\) biết \(d\) đi qua điểm \(M\left( { - 3;2} \right)\) và \(N\left( {1; - 1} \right)\).
-
A.
\( - \dfrac{4}{3}\)
-
B.
\(\dfrac{4}{3}\)
-
C.
\(\dfrac{3}{4}\)
-
D.
\( - \dfrac{3}{4}\)
“Trong các dây của một đường tròn, đường kính là dây có độ dài…”. Cụm từ thích hợp điền vào chỗ trống là:
-
A.
nhỏ nhất
-
B.
lớn nhất
-
C.
bằng 10cm
-
D.
bằng tổng hai dây bất kỳ
Hình lập phương có thể tích \(512c{m^3}\) thì có diện tích toàn phần là:
-
A.
\(384c{m^2}\)
-
B.
\(284c{m^2}\)
-
C.
\(484c{m^2}\)
-
D.
Một giá trị khác
Giá trị của biểu thức \(2\sqrt {32} - \sqrt {27} - 4\sqrt 8 + 3\sqrt {75} \) là:
-
A.
\(16\sqrt 2 + 12\sqrt 3 \)
-
B.
\(15\sqrt 3 \)
-
C.
\(12\sqrt 3 \)
-
D.
\(16\sqrt 2 \)
Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + 2{m^2} - 3m + 1 = 0\), với \(m\) là tham số. Gọi \({x_1},{x_2}\) là nghiệm của phương trình. Chọn câu đúng.
-
A.
\(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| \le \dfrac{9}{8}\)
-
B.
\(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| \ge \dfrac{9}{8}\)
-
C.
\(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| = \dfrac{9}{8}\)
-
D.
\(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| \ge 2\)
Hình vẽ bên là đồ thị của hàm số nào dưới đây?
-
A.
\(y = 2x - 1\)
-
B.
\(y = x - 1\)
-
C.
\(y = x - 2\)
-
D.
\(y = - 2x - 1\)
Trong các hàm số \(y = - 3x + 2;y = - \dfrac{1}{3}\left( { - x + 1} \right);y = 6 - \dfrac{x}{2};y = - \left( {1 - 2x} \right)\), có bao nhiêu hàm số nghịch biến?
-
A.
\(1\)
-
B.
\(3\)
-
C.
\(4\)
-
D.
\(2\)
Một trục lăn có dạng hình trụ nằm ngang (như hình vẽ), hình trụ có diện tích một đáy \(S = 36\pi \,c{m^2}\) và chiều cao \(h = 8\,cm\) . Nếu trục lăn đủ \(10\) vòng thì diện tích tạo trên sân phẳng là bao nhiêu?
-
A.
\(1200\pi \,\left( {c{m^2}} \right)\)
-
B.
\(480\pi \,\left( {c{m^2}} \right)\)
-
C.
\(960\pi \,\left( {c{m^2}} \right)\)
-
D.
\(960\,\left( {c{m^2}} \right)\)
Tìm giá trị nhỏ nhất của biểu thức \(A = \sqrt {{m^2} + 2m + 1} + \sqrt {{m^2} - 8m + 16} \).
-
A.
$2$
-
B.
$9$
-
C.
$5$
-
D.
$10$
Lời giải và đáp án
Cho đường thẳng \(d\):\(y = - kx + b\,\,\left( {k \ne 0} \right)\). Hệ số góc của đường thẳng \(d\) là
-
A.
\( - k\)
-
B.
\(k\)
-
C.
\(\dfrac{1}{k}\)
-
D.
\(b\)
Đáp án : A
Đường thẳng \(d\) có phương trình \(y = - kx + b\,\,\left( {k \ne 0} \right)\) có \( - k\) là hệ số góc.
Cho hàm số \(y = \left( {1 - \sqrt {m - 1} } \right){x^2}.\) Hàm số đã cho đồng biến khi \(x < 0\) nếu:
-
A.
\(m < 0\)
-
B.
\(m > 1\)
-
C.
\(m > 2\)
-
D.
\(m \in \emptyset \)
Đáp án : C
Dựa vào tính chất của đồ thị hàm số bậc \(2:y = a{x^2}\left( {a \ne 0} \right)\):
Khi \(a > 0\) thì bề lõm quay lên trên (tức là hàm số đồng biến khi \(x > 0\) và nghịch biến khi \(x < 0\)).
Khi \(a < 0\) thì bề lõm quay xuống dưới (tức là hàm số đồng biến khi \(x < 0\) và nghịch biến khi \(x > 0\))
Hàm số đồng biến khi \(x < 0\) thì \(1 - \sqrt {m - 1} < 0 \Rightarrow m > 2\)
Cho hai đường tròn \(\left( {O;6\,cm} \right)\) và \(\left( {O';2\,cm} \right)\) cắt nhau tại \(A,B\) sao cho \(OA\) là tiếp tuyến của \(\left( {O'} \right)\). Độ dài dây \(AB\) là
-
A.
\(AB = 3\sqrt {10} \,cm\)
-
B.
\(AB = \dfrac{{6\sqrt {10} }}{5}\,cm\)
-
C.
\(AB = \dfrac{{3\sqrt {10} }}{5}\,cm\)
-
D.
\(AB = \dfrac{{\sqrt {10} }}{5}\,cm\)
Đáp án : B
Sử dụng tính chất đường nối tâm của hai đường tròn cắt nhau và hệ thức lượng trong tam giác vuông.
Vì \(OA\) là tiếp tuyến của \(\left( {O'} \right)\) nên \(\Delta OAO'\) vuông tại \(A\).
Vì \(\left( O \right)\) và \(\left( {O'} \right)\) cắt nhau tại \(A,B\) nên đường nối tâm \(OO'\) là trung trực của đoạn \(AB\).
Gọi giao điểm của \(AB\) và \(OO'\) là \(I\) thì \(AB \bot OO'\) tại \(I\) là trung điểm của \(AB\)
Áp dụng hệ thức lượng trong tam giác vuông \(OAO'\) ta có
\(\dfrac{1}{{A{I^2}}} = \dfrac{1}{{O{A^2}}} + \dfrac{1}{{O'{A^2}}} = \dfrac{1}{{{6^2}}} + \dfrac{1}{{{2^2}}} \Rightarrow AI = \dfrac{{3\sqrt {10} }}{5}\,cm \Rightarrow AB = \dfrac{{6\sqrt {10} }}{5}\,cm\)
Cho tam giác \(ABC\) vuông tại \(A\) có cạnh \(AB = 6cm\) và \(AC = 8cm\) . Các phân giác trong và ngoài của góc \(B\) cắt đường thẳng \(AC\) lần lượt tại \(M\) và \(N\). Tính các đoạn thẳng \(AM\) và \(AN\).
-
A.
\(AM = 3cm\,\,;\,\,\,AN = 9cm\)
-
B.
\(AM = 2cm\,\,;\,\,\,AN = 18cm\)
-
C.
\(AM = 4cm\,\,;\,\,\,AN = 9cm\)
-
D.
\(AM = 3cm\,\,;\,\,\,AN = 12cm\)
Đáp án : D
Sử dụng định lý Pitago cho tam giác ABC vuông tại A để tính độ dài cạnh BC.
Theo đề bài ta có AM, AN lần lượt là các đường phân giác trong và ngoài của góc B.
Khi đó áp dụng tính chất tia phân giác của một góc ta có: \(\dfrac{{AM}}{{MC}} = \dfrac{{AN}}{{NC}} = \dfrac{{AB}}{{BC}}.\)
Áp dụng định lý Pitago cho \(\Delta ABH\) vuông tại \(A\) có: \(A{B^2} + A{C^2} = B{C^2}\)
\( \Leftrightarrow B{C^2} = {6^2} + {8^2} = 100 \Rightarrow BC = 10\left( {cm} \right)\)
Vì \(BM\) là tia phân giác trong của góc \(B \Rightarrow \dfrac{{MA}}{{MC}} = \dfrac{{AB}}{{BC}}\) (Tính chất đường phân giác)
\( \Rightarrow \dfrac{{MA}}{{MC + MA}} = \dfrac{{AB}}{{BC + AB}} \Rightarrow \dfrac{{MA}}{{AC}} = \dfrac{{AB}}{{BC + AB}}\)\( \Rightarrow \dfrac{{MA}}{8} = \dfrac{6}{{10 + 6}} \Rightarrow MA = 3cm\)
Vì \(BM;BN\) là tia phân giác trong và ngoài của góc \(B \Rightarrow \angle NBM = {90^0}\)
Áp dụng hệ thức lượng trong \(\Delta ABM\) vuông tại \(B\) có đường cao \(BA\) ta có:
\( \Rightarrow A{B^2} = AM.AN\)\( \Leftrightarrow {6^2} = 3.AN \Leftrightarrow AN = 12\left( {cm} \right)\)
Cho hình trụ có bán kính đáy \(R = 12\,cm\) và diện tích toàn phần \(672\pi \)\(c{m^2}\) . Tính chiều cao của hình trụ.
-
A.
\(16\,cm\)
-
B.
\(18\,cm\)
-
C.
\(8\,cm\)
-
D.
\(20\,cm\)
Đáp án : A
Sử dụng công thức tính diện tích toàn phần của hình trụ để tính chiều cao hình trụ
\(S_{tp}=S_{xq}+S_{2\,đáy}=2\pi.R.h+2 \pi R^2\)
Diện tích toàn phần của hình trụ là:
\(24\pi h + 2\pi {.12^2} = 672\pi \)
Suy ra \(h = 16\,(cm)\)
Giải hệ phương trình: \(\left\{ \begin{array}{l}\dfrac{1}{{x - 2}} + \dfrac{4}{{3y + 1}} = 5\\\dfrac{2}{{x - 2}} - \dfrac{4}{{3y + 1}} = - 2\end{array} \right.\)
-
A.
\(\left( {x;y} \right) = \left( {3;0} \right).\)
-
B.
\(\left( {x;y} \right) = \left( {1;1} \right).\)
-
C.
\(\left( {x;y} \right) = \left( {1;2} \right).\)
-
D.
\(\left( {x;y} \right) = \left( {1; - 1} \right).\)
Đáp án : A
Tìm điều kiện xác định của hệ phương trình.
Đặt \(\left\{ \begin{array}{l}u = \dfrac{1}{{x - 2}}\\v = \dfrac{1}{{3y + 1}}\end{array} \right.\). Giải hệ phương trình được \(u,v \Rightarrow x,y\) đối chiếu điều kiện và kết luận.
Điều kiện: \(x \ne 2,\,\,\,y \ne - \dfrac{1}{3}.\)
Đặt \(\left\{ \begin{array}{l}u = \dfrac{1}{{x - 2}}\\v = \dfrac{1}{{3y + 1}}\end{array} \right..\) Khi đó ta có hệ phương trình
\( \Leftrightarrow \left\{ \begin{array}{l}u + 4v = 5\\2u - 4v = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3u = 3\\u + 4v = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}u = 1\\v = 1\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}\dfrac{1}{{x - 2}} = 1\\\dfrac{1}{{3y + 1}} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 1\\3y + 1 = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\,\,\,\,\left( {tm} \right)\\y = 0\,\,\,\left( {tm} \right)\end{array} \right.\)
Vậy nghiệm của hệ phương trình là \(\left( {x;y} \right) = \left( {3;0} \right).\)
Rút gọn biểu thức \(\sqrt {9{{\left( { - a} \right)}^2}.{{\left( {3 - 4a} \right)}^6}} \) với \(a \ge \dfrac{3}{4}\) ta được:
-
A.
\(3a{\left( {4a - 3} \right)^3}\)
-
B.
\( - 3a{\left( {4a - 3} \right)^3}\)
-
C.
\(3a\left( {4a - 3} \right)\)
-
D.
\(3a{\left( {3 - 4a} \right)^3}\)
Đáp án : A
- Sử dụng công thức khai phương một tích: Với hai số \(a,b\) không âm, ta có \(\sqrt a .\sqrt b = \sqrt {ab} \)
- Sử dụng hằng đẳng thức \(\sqrt {{A^2}} = \left| A \right|\)
\(\sqrt {9{{\left( { - a} \right)}^2}.{{\left( {3 - 4a} \right)}^6}} = \sqrt 9 \sqrt {{{\left( { - a} \right)}^2}} .\sqrt {{{\left( {3 - 4a} \right)}^6}} = \sqrt {{3^2}} \sqrt {{{\left( { - a} \right)}^2}} .\sqrt {{{\left( {{{\left( {3 - 4a} \right)}^3}} \right)}^2}} = \left| 3 \right|\left| { - a} \right|.\left| {{{\left( {3 - 4a} \right)}^3}} \right| = 3a.{\left( {4a - 3} \right)^3}\)
(vì \(a \ge \dfrac{3}{4} \Rightarrow 3 - 4a \le 0 \Rightarrow \left| {3 - 4a} \right| = 4a - 3 \Rightarrow \left| {{{\left( {3 - 4a} \right)}^3}} \right| = {\left( {4a - 3} \right)^3}\))
Cho \(x,y\) là các số tự nhiên thỏa mãn điều kiện \(\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 2.\) Tính giá trị của biểu thức \(Q = x\sqrt {{y^2} + 1} + y\sqrt {{x^2} + 1} .\)
-
A.
\(Q = - \dfrac{3}{4}\)
-
B.
\(Q = \dfrac{4}{3}\)
-
C.
\(Q = - \dfrac{4}{3}\)
-
D.
\(Q = \dfrac{3}{4}\)
Đáp án : D
Biến đổi biểu thức đã cho bằng phương pháp nhân liên hợp sau đó tính giá trị biểu thức \(Q\).
Theo đề bài ta có: \(\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 2\)
\(\begin{array}{l} \Rightarrow \left( {x + \sqrt {{x^2} + 1} } \right)\left( {\sqrt {{x^2} + 1} - x} \right)\left( {y + \sqrt {{y^2} + 1} } \right)\left( {\sqrt {{y^2} + 1} - y} \right) = 2\left( {\sqrt {{x^2} + 1} - x} \right)\left( {\sqrt {{y^2} + 1} - y} \right)\\ \Leftrightarrow \left( {{x^2} + 1 - {x^2}} \right)\left( {{y^2} + 1 - {y^2}} \right) = 2\left( {\sqrt {{x^2} + 1} - x} \right)\left( {\sqrt {{y^2} + 1} - y} \right)\\ \Leftrightarrow 1 = 2\left[ {\left( {\sqrt {{x^2} + 1} \sqrt {{y^2} + 1} + xy} \right) - \left( {x\sqrt {{y^2} + 1} + y\sqrt {{x^2} + 1} } \right)} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)
Lại có: \(\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 2\)
\(\begin{array}{l} \Rightarrow \left( {\sqrt {{x^2} + 1} \sqrt {{y^2} + 1} + xy} \right) + \left( {x\sqrt {{y^2} + 1} + y\sqrt {{x^2} + 1} } \right) = 2\,\,\\ \Leftrightarrow 2\left( {\sqrt {{x^2} + 1} \sqrt {{y^2} + 1} + xy} \right) + 2\left( {x\sqrt {{y^2} + 1} + y\sqrt {{x^2} + 1} } \right) = 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array}\)
Từ \(\left( 1 \right),\left( 2 \right)\) ta được: \( - 4\left( {x\sqrt {{y^2} + 1} + y\sqrt {{x^2} + 1} } \right) = - 3\)\( \Rightarrow x\sqrt {{y^2} + 1} + y\sqrt {{x^2} + 1} = \dfrac{3}{4}.\)
Vậy \(Q = \dfrac{3}{4}.\)
Cho hình cầu có bán kính \(5\,cm\). Một hình nón cũng có bán kính đáy bằng \(5\,cm\) và có diện tích toàn phần bằng diện tích mặt cầu. Tính chiều cao của hình nón.
-
A.
\(20\)
-
B.
\(10\)
-
C.
\(10\sqrt 2 \)
-
D.
\(2\sqrt {10} \)
Đáp án : C
Sử dụng công thức diện tích mặt cầu \(S = 4\pi {R^2}\) và diện tích toàn phần của hình nón \({S_{tp}} = \pi Rl + \pi {R^2}\)
Sử dụng công thức liên hệ \({l^2} = {R^2} + {h^2}\) để tính chiều cao của hình nón.
Gọi \(l\) là độ dài đường sinh của hình nón.
Vì bán kính hình cầu và bán kính đáy của hình nón bằng nhau nên từ giả thiết ta có:
\(4\pi {R^2} = \pi Rl + \pi {R^2}\)
\(4{R^2} = Rl + {R^2} \)
\(3{R^2} = Rl \)
\(l = 3R = 3.5 = 15\,(cm)\)
Sử dụng công thức tính chiều cao hình nón ta có:
\({h^2} = {l^2} - {R^2} = {15^2} - {5^2} = 200\)
Suy ra \(h = 10\sqrt 2 \,\,(cm)\)
Cho hai đường tròn \(\left( {O;4cm} \right)\) và \(\left( {O';3cm} \right)\) biết \(OO' = 5cm\). Hai đường tròn trên cắt nhau tại \(A\) và \(B\). Độ dài \(AB\) là:
-
A.
\(2,4cm\)
-
B.
\(4,8cm\)
-
C.
\(\dfrac{5}{{12}}cm\)
-
D.
\(5cm\)
Đáp án : B
Dựa vào tính chất hai đường tròn cắt nhau.
Định lí Pi-ta-go đảo.
Hệ thức lượng trong tam giác vuông.
Xét tam giác \(OAO'\) có \(O{A^2} + O'{A^2} = OO{'^2}\) (vì \({4^2} + {3^2} = {5^2}\)) nên tam giác \(OAO'\) vuông tại \(A\).
Xét tam giác \(OAO'\) có \(AH\) là đường cao nên \(AH.OO' = OA.O'A \Rightarrow AH = \dfrac{{OA.O'A}}{{OO'}} = \dfrac{{4.3}}{5} = \dfrac{{12}}{5}\)
Mà \(AB = 2AH\) nên \(AB = \dfrac{{24}}{5} = 4,8cm\)
Cho tam giác \(ABC\) có các đường cao \(BD,CE\) . Chọn khẳng định đúng.
-
A.
Bốn điểm \(B,E,D,C\) cùng nằm trên một đường tròn
-
B.
Năm điểm \(A,B,E,D,C\) cùng nằm trên một đường tròn
-
C.
Cả A, B đều sai
-
D.
Cả A, B đều đúng
Đáp án : A
Sử dụng: Trong tam giác vuông trung điểm cạnh huyền là tâm đường tròn ngoại tiếp.
Gọi \(I\) là trung điểm của \(BC\).
Xét tam giác \(BEC\) vuông tại \(E\) có \(EI = IB = IC = \dfrac{{BC}}{2}\) (vì \(EI\) là đường trung tuyến ứng với cạnh huyền)
Xét tam giác \(BDC\) vuông tại \(D\) có \(DI = IB = IC = \dfrac{{BC}}{2}\) (vì \(DI\) là đường trung tuyến ứng với cạnh huyền)
Từ đó ta có \(ID = IE = IB = IC = \dfrac{{BC}}{2}\) nên bốn điểm \(B,E,D,C\) cùng nằm trên một đường tròn có bán kính \(R = \dfrac{{BC}}{2}\).
Ta thấy \(IA > ID\) nên điểm \(A\) không thuộc đường tròn trên.
Cho hai đường thẳng \(\left( {{d_1}} \right):y = 2x - 3\) và \(\left( {{d_2}} \right):y = - \dfrac{1}{2}x + 2\)
Tìm \(m\) để ba đường thẳng \(\left( {{d_1}} \right)\), \(\left( {{d_2}} \right)\) và \(\left( {{d_3}} \right):y = 3x - 2m - 3\) đồng quy.
-
A.
\(m=1\)
-
B.
\(m=2\)
-
C.
\(m=3\)
-
D.
\(m=-1\)
Đáp án : A
Xét phương trình hoành độ giao điểm của hai đồ thị \((d_1);(d_2)\) để tìm \(x,\) thay giá trị \(x\) vừa tìm được vào 1 trong hai phương trình để tìm \(y.\)
Ba đường thẳng đồng quy khi và chỉ khi đường thẳng thứ ba đi qua giao điểm của hai đường thẳng còn lại.
Xét phương trình hoành độ giao điểm của \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\):
\(2x - 3 = - \dfrac{1}{2}x + 2 \Leftrightarrow 2x + \dfrac{1}{2}x = 2 + 3 \Leftrightarrow \dfrac{5}{2}x = 5 \Leftrightarrow x = 2\)
Thay \(x = 2\) vào hàm số \(y = 2x - 3\) ta được \(y = 2.2 - 3 = 1.\)
Vậy tọa độ giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) là \(A\left( {2;1} \right)\).
Ba đường thẳng \(\left( {{d_1}} \right)\) , \(\left( {{d_2}} \right)\) và \(\left( {{d_3}} \right):y = 3x - 2m - 3\) đồng quy \( \Rightarrow \left( {{d_3}} \right)\) đi qua giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\)\( \Rightarrow A \in \left( {{d_3}} \right)\)
Thay tọa độ điểm \(A\) vào hàm số \(\left( {{d_3}} \right):\,\,y = 3x - 2m - 3\) ta được:
\(1 = 3.2 - 2m - 3\)\( \Rightarrow 2m = 6 - 3 - 1 \Rightarrow m = 1\)
Vậy \(m = 1\) thì ba đường thẳng \(\left( {{d_1}} \right)\) , \(\left( {{d_2}} \right)\) và \(\left( {{d_3}} \right):y = 3x - 2m - 3\) đồng quy.
Cho hình nón có chiều cao \(h = 24cm\) và thể tích \(V = 800\pi \,\left( {c{m^3}} \right)\) . Tính diện tích toàn phần của hình nón.
-
A.
\(160\pi \,\left( {c{m^2}} \right)\)
-
B.
\(260\pi \,\left( {c{m^2}} \right)\)
-
C.
\(300\pi \,\left( {c{m^2}} \right)\)
-
D.
\(360\pi \,\left( {c{m^2}} \right)\)
Đáp án : D
Sử dụng công thức thể tich khối nón \(V = \dfrac{1}{3}\pi {R^2}h\) để tính bán kính đường tròn đáy
Sử dụng công thức liên hệ \({R^2} + {h^2} = {l^2}\) để tìm đường sinh của hình nón
Sử dụng công thức tính diện tích toàn phần của hình nón \({S_{tp}} = \pi Rl + \pi {R^2}\)
Ta có \(V = \dfrac{1}{3}\pi {R^2}h = \dfrac{1}{3}\pi {R^2}.24 = 800\pi \) suy ra \( {R^2} = 100 \) do đó \( R = 10\,cm\)
Và \({R^2} + {h^2} = {l^2} \) hay \( {10^2} + {24^2} = {l^2} \) suy ra \( l = 26\,cm\)
Diện tích toàn phần của hình nón là:
\({S_{tp}} = \pi Rl + \pi {R^2} = \pi .10.26 + \pi {.10^2} = 360\pi \,\left( {c{m^2}} \right)\)
Tính chiều cao của cây trong hình vẽ bên (Làm tròn đến chữ số thập phân thứ nhất)
-
A.
\(14,3m\)
-
B.
\(15,7m\)
-
C.
\(16,8m\)
-
D.
\(17,2m\)
Đáp án : B
Sử dụng giá trị lượng giác của một góc nhọn trong tam giác vuông để giải tam giác.
Trong tam giác vuông, độ dài 1 cạnh góc vuông bằng cạnh góc vuông còn lại nhân tang góc đối.
Chiều cao của cây là : \(h = 1,7 + 20.\tan 35^\circ \approx 15,7m\).
Cho tam giác \(MNP\) có \(MN = 5cm,NP = 12cm,MP = 13cm\). Vẽ đường tròn \(\left( {M;NM} \right)\). Khẳng định nào sau đây là đúng?
-
A.
\(NP\) là tiếp tuyến của \(\left( {M;MN} \right)\)
-
B.
\(MP\) là tiếp tuyến của \(\left( {M;MN} \right)\)
-
C.
\(\Delta MNP\) vuông tại \(M\)
-
D.
\(\Delta MNP\) vuông tại \(P\)
Đáp án : A
Sử dụng cách chứng minh tiếp tuyến
Để chứng minh đường thẳng \(d\) là tiếp tuyến của đường tròn \(\left( {O;R} \right)\) tại tiếp điểm là \(M\) ta chứng minh \(OM \bot d\) tại \(M\) và \(M \in \left( O \right)\).
+) Xét tam giác \(MNP\) có \(M{P^2} = {13^2} = 169;N{M^2} + N{P^2} = {5^2} + {12^2} = 169\)\( \Rightarrow M{P^2} = N{M^2} + N{P^2}\)
\( \Rightarrow \Delta MNP\) vuông tại N (định lý Pytago đảo)
\( \Rightarrow MN \bot NP\) mà \(N \in \left( {M;MN} \right)\) nên \(NP\) là tiếp tuyến của \(\left( {M;MN} \right)\)
Cho (P): \(y = {x^2}\) và đường thẳng \(d':y = 2x + 1\). Phương trình đường thẳng d // d’ và d tiếp xúc (P) là:
-
A.
y = 2x - 1
-
B.
y = 2x + 1
-
C.
y = - 2x - 1
-
D.
Đáp án khác
Đáp án : A
- \(d//d' \Leftrightarrow \left\{ \begin{array}{l} a = a'\\ b \ne b' \end{array} \right.\)
- d tiếp xúc (P) khi và chỉ khi phương trình hoành độ giao điểm của d và (P) có nghiệm kép.
Gọi d: y = ax + b
\(d//d':y = 2x + 1 \Rightarrow \left\{ \matrix{a = 2 \hfill \cr b \ne 1 \hfill \cr} \right.\)
d : 2x + b tiếp xúc với (P) suy ra phương trình \({x^2} = 2x + b\) có nghiệm kép
\( \Leftrightarrow {x^2} - 2x - b = 0\) có nghiệm kép
\( \Leftrightarrow \Delta ' = 0 \Leftrightarrow 1 + b = 0 \Leftrightarrow b = - 1\)
Vậy \(d:y = 2x - 1.\)
Cho phương trình \(a{x^2} + bx + c = 0\,\,(a \ne 0)\) có biệt thức \(b = 2b';\Delta ' = b{'^2} - ac\). Phương trình đã cho vô nghiệm khi
-
A.
\(\Delta ' > 0\)
-
B.
\(\Delta ' = 0\)
-
C.
\(\Delta ' \ge 0\)
-
D.
\(\Delta ' < 0\)
Đáp án : D
Dựa vào công thức nghiệm thu gọn của phương trình bậc hai một ẩn:
Xét phương trình bậc hai một ẩn $a{{x}^{2}}+bx+c=0\left( a\ne 0 \right)$, với $b=2b'$ và $\Delta '=b{{'}^{2}}-ac$.
- Nếu $\Delta '>0$ thì phương trình có hai nghiệm phân biệt:
${{x}_{1}}=\frac{-b'+\sqrt{\Delta '}}{a};{{x}_{2}}=\frac{-b'-\sqrt{\Delta '}}{a}$.
- Nếu $\Delta '=0$ thì phương trình có nghiệm kép ${{x}_{1}}={{x}_{2}}=-\frac{b'}{a}$.
- Nếu $\Delta '<0$ thì phương trình vô nghiệm.
Phương trình vô nghiệm khi $\Delta '<0$.
Rút gọn rồi tính giá trị của biểu thức \(Q = \dfrac{{2x - 3\sqrt x - 2}}{{\sqrt x - 2}}\) tại \(x = 2020 - 2\sqrt {2019} \)
-
A.
\(Q = 2\sqrt x + 1\,\,\,;\,\,\,2\sqrt {2019} - 1\)
-
B.
\(Q = 2\sqrt x - 1\,\,\,;\,\,\,2\sqrt {2019} - 3\)
-
C.
\(Q = \sqrt x - 2\,\,\,;\,\,\,\sqrt {2019} - 3\)
-
D.
\(Q = \sqrt x + 2\,\,\,;\,\,\,\sqrt {2019} + 1\)
Đáp án : A
Tìm ĐKXĐ của biểu thức, rút gọn biểu thức Q sau đó xét xem \(x = 2020 - 2\sqrt {2019} \) có thỏa mãn điều kiện bài toán hay không rồi thay vào biểu thức và tính giá trị biểu thức Q.
ĐKXĐ: \(x \ge 0,\,\,x \ne 4.\)
\(Q = \dfrac{{2x - 3\sqrt x - 2}}{{\sqrt x - 2}}\)\( = \dfrac{{\left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\sqrt x - 2}}\)\( = 2\sqrt x + 1.\)
Ta có: \(x = 2020 - 2\sqrt {2019} \)\( = 2019 - 2\sqrt {2019} + 1\)\( = {\left( {\sqrt {2019} - 1} \right)^2}\,\,\,\left( {tm} \right)\)
\( \Rightarrow \sqrt x = \sqrt {{{\left( {\sqrt {2019} - 1} \right)}^2}} = \left| {\sqrt {2019} - 1} \right| = \sqrt {2019} - 1\,.\)
Thay \(\sqrt x = \sqrt {2019} - 1\) vào biểu thức \(Q\) ta được:
\(Q = 2\left( {\sqrt {2019} - 1} \right) + 1\)\( = 2\sqrt {2019} - 2 + 1\)\( = 2\sqrt {2019} - 1.\)
Vậy \(x = 2020 - 2\sqrt {2019} \) thì \(Q = 2\sqrt {2019} - 1.\)
Không dùng bảng số và máy tính, hãy so sánh \(\cot 50^\circ \) và \(\cot 46^\circ \)
-
A.
\(\cot 46^\circ = \cot 50^\circ \)
-
B.
\(\cot 46^\circ > \cot 50^\circ \)
-
C.
\(\cot 46^\circ < \cot 50^\circ \)
-
D.
\(\cot 46^\circ \ge \cot 50^\circ \)
Đáp án : B
Sử dụng nhận xét : Với góc nhọn \(\alpha ,\,\beta ,\) ta có: \(\alpha < \beta \Leftrightarrow \cot \alpha > \cot \beta \)
Vì \(46^\circ < 50^\circ \Leftrightarrow \cot 46^\circ > \cot 50^\circ \).
Một người đi xe máy từ A đến B với vận tốc trung bình 30km/giờ. Khi đi được 1 giờ thì xe bị hỏng, người đó phải dừng lại để sửa xe mất 10 phút. Sau khi sửa xong người đó đi tiếp tới B, để đến B đúng giờ đã định người đó phải tăng vận tốc thêm 6km/h. Tính độ dài quãng đường AB.
-
A.
\(60\,km\)
-
B.
\(120\,km\)
-
C.
\(90\,km\)
-
D.
\(150\,km\)
Đáp án : A
Giải theo các bước sau:
+ Lập phương trình: Chọn ẩn và đặt điều kiện; biểu diễn đại lượng chưa biết theo ẩn và đại lượng đã biết; lập phương trình biểu thị mối quan hệ giữa các đại lượng
+ Giải phương trình
+ Đối chiếu điều kiện rồi kết luận
Đổi 10 phút = \(\dfrac{1}{6}\) giờ.
Gọi quãng đường AB dài là \(x\left( {km} \right)\left( {x > 30{\rm{ }}} \right)\).
Suy ra quãng đường từ khi dừng lại sửa xe đến B là \(x- 30{\rm{ }}\left( {km} \right)\).
Thời gian dự định đi từ A đến B là \(\dfrac{x}{{30}}\)(h).
Thời gian thực tế đi từ A đến B là \(1 + \dfrac{1}{6} + \dfrac{{x - 30}}{{36}}\) (h).
Ta có phương trình:
\(1 + \dfrac{1}{6} + \dfrac{{x - 30}}{{36}} = \dfrac{x}{{30}}\)
\( \Leftrightarrow \dfrac{{36 + 6 + x - 30}}{{36}} = \dfrac{x}{{30}}\)
\(\begin{array}{l} \Leftrightarrow \dfrac{{12 + x}}{{36}} = \dfrac{x}{{30}}\\ \Rightarrow 30\left( {12 + x} \right) = 36.x\\ \Leftrightarrow 360 + 30x = 36x\\ \Leftrightarrow 6x = 360\\ \Leftrightarrow x = 60\left( {tm} \right)\end{array}\)
Vậy quãng đường \(AB\) dài \(60\) km.
Hai số \(u = m;v = 1 - m\) là nghiệm của phương trình nào dưới đây?
-
A.
\({x^2} - x + m\left( {1 - m} \right) = 0\)
-
B.
\({x^2} + m\left( {1 - m} \right)x - 1 = 0\)
-
C.
\({x^2} + x - m\left( {1 - m} \right) = 0\)
-
D.
\({x^2} - m\left( {1 - m} \right)x - 1 = 0\)
Đáp án : A
Hai số \(u,v\) có \(u + v = S;uv = P\) thì \(u,v\) là hai nghiệm của phương trình \({x^2} - Sx + P = 0\).
Ta có: \(\left\{ \begin{array}{l}S = u + v = m + 1 - m = 1\\P = uv = m\left( {1 - m} \right)\end{array} \right.\)
Suy ra \(u,v\) là hai nghiệm của phương trình \({x^2} - Sx + P = 0\) hay \({x^2} - x + m\left( {1 - m} \right) = 0\).
Kết quả phân tích đa thức \({x^2} + xy-x-y\;\) thành nhân tử là:
-
A.
\(\left( {x + y} \right)\left( {x-1} \right)\)
-
B.
\(\left( {x + y} \right)\left( {x + 1} \right)\;\;\)
-
C.
\(\left( {x-y} \right)\left( {x-1} \right)\)
-
D.
\(\left( {x-y} \right)\left( {x + 1} \right)\)
Đáp án : A
Sử dụng phương pháp nhóm hạng tử để phân tích đa thức thành nhân tử.
\({x^2} + xy - x - y = x\left( {x + y} \right) - \left( {x + y} \right)\)\( = \left( {x - 1} \right)\left( {x + y} \right)\).
Cho tam giác \(ABC\) vuông tại \(C\) có \(AC = 1\,cm,\,\,BC = 2\,cm.\) Tính các tỉ số lượng giác \(\sin B;\cos B\)
-
A.
\(\sin B = \dfrac{1}{{\sqrt 3 }};\cos B = \dfrac{{2\sqrt 3 }}{3}\)
-
B.
\(\sin B = \dfrac{{\sqrt 5 }}{5};\cos B = \dfrac{{2\sqrt 5 }}{5}\)
-
C.
\(\sin B = \dfrac{1}{2};\cos B = \dfrac{2}{{\sqrt 5 }}\)
-
D.
\(\sin B = \dfrac{{2\sqrt 5 }}{5};\cos B = \dfrac{{\sqrt 5 }}{5}\)
Đáp án : B
Bước 1: Tính cạnh còn lại theo định lý Pytago
Bước 2: Sử dụng định nghĩa tỉ số lượng giác của góc nhọn
Theo định lý Py-ta-go ta có: \(A{B^2} = A{C^2} + B{C^2} \Rightarrow AB = \sqrt {{1^2} + {2^2}} = \sqrt 5 \)
Xét tam giác \(ABC\) vuông tại \(C\) có \(\sin B = \dfrac{{AC}}{{AB}} = \dfrac{1}{{\sqrt 5 }} = \dfrac{{\sqrt 5 }}{5}\) và \(\cos B = \dfrac{{BC}}{{AB}} = \dfrac{2}{{\sqrt 5 }} = \dfrac{{2\sqrt 5 }}{5}\)
Cho \(\Delta ABC\) đồng dạng với \(\Delta A'B'C'\) theo tỉ số \(\dfrac{3}{5}\) và chu vi của \(\Delta A'B'C'\) là $60cm.$ Khi đó chu vi \(\Delta ABC\) là:
-
A.
\(20\,cm\)
-
B.
\(24\,cm\)
-
C.
\(36\,cm\)
-
D.
\(30\,cm\)
Đáp án : C
Ta có: \(\Delta ABC \backsim \Delta A'B'C'\) theo tỉ số \(k\)\( \Rightarrow \dfrac{{{C_{\Delta ABC}}}}{{{C_{\Delta A'B'C'}}}} = \dfrac{{AB}}{{A'B'}} = k.\)
Cho \(\Delta ABC\) đồng dạng với \(\Delta A'B'C'\) theo tỉ số \(\dfrac{3}{5}\).
\( \Rightarrow \dfrac{{AB}}{{A'B'}} = \dfrac{{BC}}{{B'C'}} = \dfrac{{AC}}{{A'C'}} = \dfrac{3}{5}\)\( \Rightarrow \dfrac{{{C_{\Delta ABC}}}}{{{C_{\Delta A'B'C'}}}} = \dfrac{3}{5} \Rightarrow {C_{\Delta ABC}} = \dfrac{3}{5}{C_{\Delta A'B'C'}}.\)
Mà chu vi của tam giác \({C_{\Delta A'B'C'}} = 60cm\) nên \({C_{\Delta ABC}} = \dfrac{3}{5}. 60 = 36cm\).
Chọn khẳng định đúng. Nếu phương trình \(a{x^2} = mx + n\) có hai nghiệm phân biệt thì đường thẳng \(d:y = mx + n\) và parabol \(\left( P \right):y = a{x^2}\)
-
A.
Cắt nhau tại hai điểm phân biệt
-
B.
Tiếp xúc với nhau
-
C.
Không cắt nhau
-
D.
Cắt nhau tại gốc tọa độ
Đáp án : A
Đường thẳng \(d:y = mx + n\) và parabol \(\left( P \right):y = a{x^2}\) cắt nhau tại hai điểm phân biệt khi phương trình \(a{x^2} = mx + n\) có hai nghiệm phân biệt.
Nếu \(\Delta ABC\) vuông tại A có \(BH = 9,HC = 25\) thì đường cao \(AH\) có độ dài là:
-
A.
\(15\)
-
B.
\(225\)
-
C.
\(\sqrt {15} \)
-
D.
\(\dfrac{{25}}{9}\)
Đáp án : A
Sử dụng hệ thức lượng trong tam giác vuông: “Bình phương đường cao ứng với cạnh huyền bằng tích hai hình chiếu của hai cạnh góc vuông trên cạnh huyền”.
Xét tam giác \(ABC\) vuông tại \(A\) có chiều cao \(AH.\) Theo hệ thức lượng trong tam giác vuông ta có:
\(A{H^2} = HB.HC \Leftrightarrow A{H^2} = 9.25\) \( \Leftrightarrow A{H^2} = 225 \Rightarrow AH = 15\)
Vậy \(AH = 15\,cm.\)
Đưa thừa số \(5x\sqrt {\dfrac{{ - 12}}{{{x^3}}}} \) (\(x < 0\)) vào trong dấu căn ta được:
-
A.
\(\sqrt {\dfrac{{300}}{x}} \)
-
B.
\(\sqrt {\dfrac{{ - 300}}{x}} \)
-
C.
\( - \sqrt {\dfrac{{ - 300}}{x}} \)
-
D.
\( - \sqrt {\dfrac{{ - 60}}{x}} \)
Đáp án : C
Đưa thừa số vào trong dấu căn
+) \(A\sqrt B = \sqrt {{A^2}B} \) với \(A \ge 0\) và \(B \ge 0\)
+) \(A\sqrt B = - \sqrt {{A^2}B} \) với \(A < 0\) và \(B \ge 0\)
Ta có: \(5x\sqrt {\dfrac{{ - 12}}{{{x^3}}}} \)\( = - \sqrt {{{\left( {5x} \right)}^2}.\dfrac{{ - 12}}{{{x^3}}}} = \sqrt {25{x^2}\left( {\dfrac{{ - 12}}{x^3}} \right)} = - \sqrt {\dfrac{{ - 300}}{x}} \).
Giải phương trình \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{{1 - x}}{{2 - x}} = \dfrac{{2({x^2} + 2)}}{{{x^2} - 4}}\) ta được tập nghiệm là:
-
A.
\(S = \left\{ 0 \right\}\)
-
B.
\(S = \left\{ {0; - 2} \right\}\)
-
C.
\(S = \left\{ {0;2} \right\}\)
-
D.
\(S = \left\{ { - 2} \right\}\)
Đáp án : A
Giải phương trình chứa ẩn ở mẫu:
Bước 1: Tìm điều kiện xác định của phương trình.
Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.
Bước 3: Giải phương trình vừa nhận được.
Bước 4: (Kết luận) Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.
ĐKXĐ: \(x \ne 2;\,\,x \ne - 2\)
\(\begin{array}{l}\,\,\,\,\,\,\,\dfrac{{x - 1}}{{x + 2}} - \dfrac{{1 - x}}{{2 - x}} = \dfrac{{2({x^2} + 2)}}{{{x^2} - 4}}\\ \Leftrightarrow \dfrac{{x - 1}}{{x + 2}} + \dfrac{{1 - x}}{{x - 2}} = \dfrac{{2({x^2} + 2)}}{{(x - 2)(x + 2)}}\\ \Leftrightarrow \dfrac{{(x - 1)(x - 2)}}{{(x - 2)(x + 2)}} + \dfrac{{(1 - x)(x + 2)}}{{(x - 2)(x + 2)}} = \dfrac{{2({x^2} + 2)}}{{(x - 2)(x + 2)}}\\ \Rightarrow (x - 1)(x - 2) + (1 - x)(x + 2) = 2({x^2} + 2)\\ \Leftrightarrow {x^2} - 2x - x + 2 + x + 2 - {x^2} - 2x = 2{x^2} + 4\\ \Leftrightarrow 2{x^2} + 4x = 0\\ \Leftrightarrow 2x(x + 2) = 0\\ \Leftrightarrow \left[ \begin{array}{l}2x = 0\\x + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\,\,\,(TM)\\x = - 2\,\,\,\,\,(KTM)\end{array} \right.\end{array}\)
Vậy tập nghiệm của phương trình là \(S = \left\{ 0 \right\}.\)
Thu gọn $\sqrt[3]{{ - \dfrac{1}{{27{a^3}}}}}$ với $a \ne 0$ ta được
-
A.
$\dfrac{1}{{3a}}$
-
B.
$\dfrac{1}{{4a}}$
-
C.
$ - \dfrac{1}{{3a}}$
-
D.
$ - \dfrac{1}{{8a}}$
Đáp án : C
Sử dụng công thức $\sqrt[3]{{{a^3}}} = a$
Ta có $\sqrt[3]{{ - \dfrac{1}{{27{a^3}}}}} = \sqrt[3]{{{{\left( { - \dfrac{1}{{3a}}} \right)}^3}}} = - \dfrac{1}{{3a}}$
Không tính cụ thể, bất đẳng thức nào sau đây là bất đẳng thức sai ?
-
A.
\( - 2.3 \ge - 6\)
-
B.
\(2.( - 3) \le 3.( - 3)\)
-
C.
\(2 + ( - 5) > ( - 5) + 1\)
-
D.
\(2.( - 4) - 3 > 2.( - 4) - 4\)
Đáp án : B
Áp dụng các tính chất:
- Khi cộng cùng một số vào hai vế của một bất đẳng thức ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
- Khi nhân cả hai vế của một bất đẳng thức với một số dương ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
- Khi nhân cả hai vế của một bất đẳng thức với một số âm ta được bất đẳng thức mới ngược chiều với bất đẳng thức đã cho.
Ta có:
+) \( - 2.3 = - 6\). Mà \( - 6 = - 6\). Vậy bất đẳng thức \( - 2.3 \ge - 6\) là đúng.
+) Ta có: \(2 < 3\) nên \(2.\left( { - 3} \right) > 3.\left( { - 3} \right)\). Vậy bất đẳng thức \(2.( - 3) \le 3.( - 3)\) là sai.
+) Ta có: \(2 > 1\) nên \(2 + ( - 5) > ( - 5) + 1\). Vậy bất đẳng thức \(2 + ( - 5) > ( - 5) + 1\) là đúng.
+ Ta có: \( - 3 > - 4\) nên \(2.( - 4) - 3 > 2.( - 4) - 4\). Vậy bất đẳng thức \(2.( - 4) - 3 > 2.( - 4) - 4\) là đúng.
Giá trị của biểu thức \(\sqrt {17 - 12\sqrt 2 } + \sqrt {9 + 4\sqrt 2 } \).
-
A.
\(3 + 4\sqrt 2 \)
-
B.
\(4\)
-
C.
\(2\)
-
D.
\(4\sqrt 2 \)
Đáp án : B
- Đưa biểu thức dưới dấu căn về hằng đẳng thức \({a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2};\)\({a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}\)
- Sử dụng hằng đẳng thức \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}A\,\,khi\,\,A \ge 0\\ - A\,\,khi\,\,A < 0\end{array} \right.\)
- Cộng trừ các căn thức bậc hai.
\(\sqrt {17 - 12\sqrt 2 } + \sqrt {9 + 4\sqrt 2 } \)\( = \sqrt {17 - 2.6\sqrt 2 } + \sqrt {9 + 2.2\sqrt 2 } = \sqrt {9 - 2.3.2\sqrt 2 + 8} + \sqrt {8 + 2.2\sqrt 2 .1 + 1} \)
\( = \sqrt {{{\left( {3 - 2\sqrt 2 } \right)}^2}} + \sqrt {{{\left( {2\sqrt 2 + 1} \right)}^2}} = \left| {3 - 2\sqrt 2 } \right| + \left| {2\sqrt 2 + 1} \right| = 3 - 2\sqrt 2 + \left( {2\sqrt 2 + 1} \right) = 4.\)
Tìm hệ số góc của đường thẳng \(d\) biết \(d\) đi qua điểm \(M\left( { - 3;2} \right)\) và \(N\left( {1; - 1} \right)\).
-
A.
\( - \dfrac{4}{3}\)
-
B.
\(\dfrac{4}{3}\)
-
C.
\(\dfrac{3}{4}\)
-
D.
\( - \dfrac{3}{4}\)
Đáp án : D
Bước 1: Viết phương trình đường thẳng \(d\)
Bước 2: Xác định hệ số góc: đường thẳng \(d\) có phương trình \(y = ax + b\,\left( {a \ne 0} \right)\) có \(a\) là hệ số góc.
Gọi \(d:y = {\rm{ax}} + b\,\left( {a \ne 0} \right)\) đi qua \(2\) điểm \(M\left( { - 3;2} \right)\) và \(N\left( {1; - 1} \right)\)
\(M\) thuộc \(d \Leftrightarrow - 3a + b = 2 \Rightarrow b = 2 + 3a\,\,\left( 1 \right)\)
\(N\) thuộc \(d \Leftrightarrow 1.a + b = - 1 \Leftrightarrow b = - 1 - a\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(2 + 3a = - 1 - a \Leftrightarrow 4a = - 3 \Leftrightarrow a = - \dfrac{3}{4}\) suy ra \(b = - 1 - a = - 1 + \dfrac{3}{4} = - \dfrac{1}{4}\)
Vậy \(d:y = - \dfrac{3}{4}x - \dfrac{1}{4}\).
Hệ số góc của \(d\) là \(k = - \dfrac{3}{4}\)
“Trong các dây của một đường tròn, đường kính là dây có độ dài…”. Cụm từ thích hợp điền vào chỗ trống là:
-
A.
nhỏ nhất
-
B.
lớn nhất
-
C.
bằng 10cm
-
D.
bằng tổng hai dây bất kỳ
Đáp án : B
Trong các dây của một đường tròn, đường kính là dây có độ dài lớn nhất.
Hình lập phương có thể tích \(512c{m^3}\) thì có diện tích toàn phần là:
-
A.
\(384c{m^2}\)
-
B.
\(284c{m^2}\)
-
C.
\(484c{m^2}\)
-
D.
Một giá trị khác
Đáp án : A
Tìm số \(a\) sao cho \(a.a.a = 512\), khi đó \(a\) là độ dài cạnh hình lập phương đó.
Tính diện tích toàn phần ta lấy cạnh nhân với cạnh rồi nhân với \(6\).
Ta có: \(8. 8. 8 = 512\) nên độ dài hình lập phương đã cho có cạnh là \(8cm\).
Diện tích toàn phần của hình lập phương đã cho là: \(8 \times 8 \times 6 = 384\,\,(c{m^2})\).
Vậy hình lập phương có thể tích \(512c{m^3}\) thì có diện tích toàn phần là \(384c{m^2}\).
Giá trị của biểu thức \(2\sqrt {32} - \sqrt {27} - 4\sqrt 8 + 3\sqrt {75} \) là:
-
A.
\(16\sqrt 2 + 12\sqrt 3 \)
-
B.
\(15\sqrt 3 \)
-
C.
\(12\sqrt 3 \)
-
D.
\(16\sqrt 2 \)
Đáp án : C
- Sử dụng công thức khai phương một tích \(\sqrt {AB} = \sqrt A .\sqrt B ,\,\,\left( {A,B \ge 0} \right)\) đưa biểu thức về các căn thức cùng loại (cùng biểu thức dưới dấu căn).
- Sử dụng \(\sqrt {{A^2}B} = \left| A \right|\sqrt B = \left\{ \begin{array}{l}A\sqrt B \,\,khi\,A \ge 0\\ - A\sqrt B \,khi\,A < 0\end{array} \right.\)
- Cộng trừ các căn thức.
\(2\sqrt {32} - \sqrt {27} - 4\sqrt 8 + 3\sqrt {75} \)\( = 2\sqrt {16.2} - \sqrt {9.3} - 4\sqrt {4.2} + 3\sqrt {25.3} \)\(= 8\sqrt 2 - 3\sqrt 3 - 8\sqrt 2 + 15\sqrt 3 = 12\sqrt 3 \)
Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + 2{m^2} - 3m + 1 = 0\), với \(m\) là tham số. Gọi \({x_1},{x_2}\) là nghiệm của phương trình. Chọn câu đúng.
-
A.
\(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| \le \dfrac{9}{8}\)
-
B.
\(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| \ge \dfrac{9}{8}\)
-
C.
\(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| = \dfrac{9}{8}\)
-
D.
\(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| \ge 2\)
Đáp án : A
+ Sử dụng hệ thức Vi-et để biến đổi và đánh giá \(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right|.\)
Ta có \(\Delta ' = {\left( {m - 1} \right)^2} - \left( {2{m^2} - 3m + 1} \right) = - {m^2} + m = m\left( {1 - m} \right)\). Để phương trình có hai nghiệm \( \Leftrightarrow \Delta ' \ge 0 \Leftrightarrow 0 \le m \le 1\). Theo định lý Viet ta có: \({x_1} + {x_2} = 2\left( {m - 1} \right)\) và \({x_1}{x_2} = 2{m^2} - 3m + 1\). Ta có \(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| = \left| {2\left( {m - 1} \right) + 2{m^2} - 3m + 1} \right|\)\( = \left| {2{m^2} - m - 1} \right| = 2\left| {{m^2} - \dfrac{m}{2} - \dfrac{1}{2}} \right| = 2\left| {{{\left( {m - \dfrac{1}{4}} \right)}^2} - \dfrac{9}{{16}}} \right|\)
Vì \(0 \le m \le 1 \Leftrightarrow - \dfrac{1}{4} \le m - \dfrac{1}{4} \le \dfrac{3}{4}\) suy ra \({\left( {m - \dfrac{1}{4}} \right)^2} \le \dfrac{9}{{16}} \Leftrightarrow {\left( {m - \dfrac{1}{4}} \right)^2} - \dfrac{9}{{16}} \le 0\)
Do đó \(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| = 2\left| {{{\left( {m - \dfrac{1}{4}} \right)}^2} - \dfrac{9}{{16}}} \right| = 2\left| {\dfrac{9}{{16}} - {{\left( {m - \dfrac{1}{4}} \right)}^2}} \right| = \dfrac{9}{8} - 2{\left( {m - \dfrac{1}{4}} \right)^2} \le \dfrac{9}{8}\)
Dấu “=” xảy ra khi và chỉ khi \(m = \dfrac{1}{4}\).
Hình vẽ bên là đồ thị của hàm số nào dưới đây?
-
A.
\(y = 2x - 1\)
-
B.
\(y = x - 1\)
-
C.
\(y = x - 2\)
-
D.
\(y = - 2x - 1\)
Đáp án : A
Sử dụng cách vẽ đồ thị hàm số
Đồ thị hàm số \(y = ax + b\,\,\left( {a \ne 0} \right)\) là một đường thẳng
Nếu \(b \ne 0\) thì đồ thị \(y = ax + b\) là đường thẳng đi qua các điểm \(A(0;b),\,\,B\left( { - \dfrac{b}{a};0} \right).\)
Từ hình vẽ suy ra đồ thị hàm số đi qua hai điểm có tọa độ \(\left( {0; - 1} \right)\) và \(\left( {2;3} \right)\) .
Thay tọa độ hai điểm vào mỗi hàm số ta thấy với hàm số \(y = 2x - 1\)
+) Thay \(x = 0;y = - 1\) và vào hàm số \(y = 2x - 1\) ta được \( - 1 = 2.0 - 1 \Leftrightarrow - 1 = - 1\) (luôn đúng)
+) Thay \(x = 2;y = 3\) và vào hàm số \(y = 2x - 1\) ta được \(3 = 2.2 - 1 \Leftrightarrow 3 = 3\) (luôn đúng)
Vậy đồ thị hàm số \(y = 2x - 1\) là đường thẳng như hình vẽ.
Trong các hàm số \(y = - 3x + 2;y = - \dfrac{1}{3}\left( { - x + 1} \right);y = 6 - \dfrac{x}{2};y = - \left( {1 - 2x} \right)\), có bao nhiêu hàm số nghịch biến?
-
A.
\(1\)
-
B.
\(3\)
-
C.
\(4\)
-
D.
\(2\)
Đáp án : D
Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của \(x\) thuộc \(\mathbb{R}\)và có tính chất sau
- Đồng biến trên \(\mathbb{R}\) nếu \(a > 0\).
- Nghịch biến trên \(\mathbb{R}\) nếu \(a < 0\).
Hàm số \(y = - 3x + 2\) có \(a = - 3 < 0\) nên là hàm số nghịch biến
Hàm số \(y = - \dfrac{1}{3}\left( { - x + 1} \right)\)\( \Leftrightarrow y = \dfrac{1}{3}x - \dfrac{1}{3}\) có \(a = \dfrac{1}{3} > 0\) nên là hàm số đồng biến
Hàm số \(y = 6 - \dfrac{x}{2}\)\( \Leftrightarrow y = - \dfrac{1}{2}x + 6\)có \(a = - \dfrac{1}{2} < 0\) nên là hàm số nghịch biến
Hàm số \(y = - \left( {1 - 2x} \right) \Leftrightarrow y = 2x - 1\) có \(a = 2 > 0\) nên là hàm số đồng biến
Vậy có hai hàm số nghịch biến \(y = - 3x + 2;y = 6 - \dfrac{x}{2}.\)
Một trục lăn có dạng hình trụ nằm ngang (như hình vẽ), hình trụ có diện tích một đáy \(S = 36\pi \,c{m^2}\) và chiều cao \(h = 8\,cm\) . Nếu trục lăn đủ \(10\) vòng thì diện tích tạo trên sân phẳng là bao nhiêu?
-
A.
\(1200\pi \,\left( {c{m^2}} \right)\)
-
B.
\(480\pi \,\left( {c{m^2}} \right)\)
-
C.
\(960\pi \,\left( {c{m^2}} \right)\)
-
D.
\(960\,\left( {c{m^2}} \right)\)
Đáp án : C
Sử dụng diện tích đáy $S_đ=\pi.R^2$ để tính bán kính \(R\) .
Sử dụng công thức tính diện tích xung quanh của hình trụ \({S_{xq}} = 2\pi Rh\)
Bán kính \(R\) của đường tròn đáy là \(\pi {R^2} = 36\pi\) suy ra \(R = 6\,cm\)
Diện tích xung quanh của hình trụ là:
\({S_{xq}} = 2\pi Rh = 2\pi .6.8 = 96\pi \,\left( {c{m^2}} \right)\)
Vì trục lăn \(10\) vòng nên diện tích tạo trên sân phẳng là \(10.96\pi = 960\pi \,\left( {c{m^2}} \right)\)
Tìm giá trị nhỏ nhất của biểu thức \(A = \sqrt {{m^2} + 2m + 1} + \sqrt {{m^2} - 8m + 16} \).
-
A.
$2$
-
B.
$9$
-
C.
$5$
-
D.
$10$
Đáp án : C
- Đưa biểu thức dưới dấu căn thành hằng đẳng thức.
- Sử dụng hằng đẳng thức $\sqrt {{A^2}} = \left| A \right|$
- Sử dụng bất đẳng thức \(\left| A \right| + \left| B \right| \ge \left| {A + B} \right|\) với mọi \(A,B.\) Dấu ‘=’ xảy ra \( \Leftrightarrow A = B\)
Ta có \(A = \sqrt {{m^2} + 2m + 1} + \sqrt {{m^2} - 8m + 16} \)\( = \sqrt {{{\left( {m + 1} \right)}^2}} + \sqrt {{{\left( {m - 4} \right)}^2}} = \left| {m + 1} \right| + \left| {m - 4} \right|\)
Ta có \(\left| {m + 1} \right| + \left| {m - 4} \right| = \left| {m + 1} \right| + \left| {4 - m} \right| \ge \left| {m + 1 + 4 - m} \right| = 5\)
Dấu “=” xảy ra khi \(m + 1 = 4 - m \) hay \( 2m = 3 \Leftrightarrow m = \dfrac{3}{2}\)
Suy ra GTNN của \(B\) là \(5 \) khi \( m = \dfrac{3}{2}\) .