Giải bài 1. 17 trang 16 SGK Toán 8 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 8, giải toán lớp 8 kết nối tri thức với cuộc sống Bài 3. Phép cộng và phép trừ đa thức Toán 8 kết nối tri


Giải bài 1.17 trang 16 SGK Toán 8 tập 1 - Kết nối tri thức

Cho hai đa thức

Đề bài

Cho hai đa thức \(A = 2{x^2}y + 3xyz - 2x + 5\) và \(B = 3xyz - 2{x^2}y + x - 4\).

a)      Tìm các đa thức A+B và A-B.

b)      Tính giá trị của các đa thức A và A+B tại x=0,5;y=-2 và z=1.

Phương pháp giải - Xem chi tiết

Muốn cộng (hay trừ) hai đa thức, ta nối hai đa thức đã cho bởi dấu (+) (hoặc dấu (-)) rồi bỏ dấu ngoặc (nếu có) và thu gọn đa thức nhận được.

Chú ý trước dấu ngoặc là dấu (-) thì khi phá ngoặc, ta đổi dấu tất cả các hạng tử trong dấu ngoặc.

Sử dụng tính chất giao hoán, kết hợp các hạng tử đồng dạng với nhau rồi thu gọn.

Thay các giá trị x=0,5; y=-2 và z=1 vào đa thức rồi tính giá trị.

Lời giải chi tiết

a)

\(\begin{array}{l}A + B = 2{x^2}y + 3xyz - 2x + 5 + 3xyz - 2{x^2}y + x - 4\\ = \left( {2{x^2}y - 2{x^2}y} \right) + \left( {3xyz + 3xyz} \right) + \left( { - 2x + x} \right) + \left( {5 - 4} \right)\\ = 6xyz - x + 1\\A - B = 2{x^2}y + 3xyz - 2x + 5 - \left( {3xyz - 2{x^2}y + x - 4} \right)\\ = 2{x^2}y + 3xyz - 2x + 5 - 3xyz + 2{x^2}y - x + 4\\ = \left( {2{x^2}y + 2{x^2}y} \right) + \left( {3xyz - 3xyz} \right) + \left( { - 2x - x} \right) + \left( {5 + 4} \right)\\ = 4{x^2}y - 3x + 9\end{array}\)

b)      Thay x=0,5; y=-2 và z=1 vào A ta được:

\(A = 2.{\left( {0,5} \right)^2}.\left( { - 2} \right) + 3.0,5.\left( { - 2} \right).1 - 2.0,5 + 5 = \left( { - 1} \right) - 3 - 1 + 5 = 0.\)

Thay x=0,5; y=-2 và z=1 vào A+B ta được:

\(A + B = 6.0,5.\left( { - 2} \right).1 - 0,5 + 1 =  - 6 - 0,5 + 1 =  - 5,5.\)


Cùng chủ đề:

Giải bài 1. 12 trang 14 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 1. 13 trang 14 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 1. 14 trang 16 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 1. 15 trang 16 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 1. 16 trang 16 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 1. 17 trang 16 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 1. 18 trang 17 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 1. 19 trang 18 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 1. 20 trang 18 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 1. 21 trang 18 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 1. 22 trang 18 SGK Toán 8 tập 1 - Kết nối tri thức