Giải bài 1 trang 81 sách bài tập toán 10 - Chân trời sáng tạo — Không quảng cáo

Bài tập cuối chương IV - SBT Toán 10 CTST


Giải bài 1 trang 81 sách bài tập toán 10 - Chân trời sáng tạo

Cho tam giác ABC với ba cạnh a, b, c. Chứng minh rằng:

Đề bài

Cho tam giác ABC với ba cạnh a, b, c. Chứng minh rằng:

\(\frac{{\cos A}}{a} + \frac{{\cos B}}{b} + \frac{{\cos C}}{c} = \frac{{{a^2} + {b^2} + {c^2}}}{{2abc}}\)

Lời giải chi tiết

Từ định lí côsin ta suy ra \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)

Suy ra:

\(\begin{array}{l}\frac{{\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}}{a} + \frac{{\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}}{b} + \frac{{\frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}}}{c}\\ = \frac{{\left( {{b^2} + {c^2} - {a^2}} \right) + \left( {{a^2} + {c^2} - {b^2}} \right) + \left( {{a^2} + {b^2} - c} \right)}}{{2abc}}\\ = \frac{{{a^2} + {b^2} + {c^2}}}{{2abc}}\end{array}\)


Cùng chủ đề:

Giải bài 1 trang 75 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 1 trang 77 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 1 trang 78 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 1 trang 79 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 1 trang 80 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 1 trang 81 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 1 trang 91 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 1 trang 94 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 1 trang 95 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 1 trang 96 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 1 trang 100 SBT toán 10 - Chân trời sáng tạo