Giải bài 2. 38 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Kết nối tri thức với cuộc sống Bài tập cuối chương II - SBT Toán 11 KNTT


Giải bài 2.38 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Tổng \(1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^n}}}\)bằng

Đề bài

Tổng \(1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^n}}}\)bằng

A. \(2 + \frac{1}{{{2^n}}}\)

B. \(2 - \frac{1}{{{2^{n - 1}}}}\)

C. \(2 - \frac{1}{{{2^{n + 1}}}}\)

D. \(2 - \frac{1}{{{2^n}}}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính tổng của cấp số nhân \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\).

Lời giải chi tiết

Đáp án D.

Dãy số \(1;\frac{1}{2};\frac{1}{{{2^2}}};...;\frac{1}{{{2^n}}}\)là cấp số nhân với \({u_1} = 1;\,\,q = \frac{1}{2}\). Cấp số nhân này có n+1 số hạng. Nên:

\({S_{n + 1}} = \frac{{{u_1}\left( {1 - {q^{n + 1}}} \right)}}{{1 - q}} = \frac{{1\left( {1 - \frac{1}{{{2^{n + 1}}}}} \right)}}{{1 - \frac{1}{2}}} = 2\left( {1 - \frac{1}{{{2^{n + 1}}}}} \right) = 2 - \frac{1}{{{2^n}}}\).


Cùng chủ đề:

Giải bài 2. 33 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 2. 34 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 2. 35 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 2. 36 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 2. 37 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 2. 38 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 2. 39 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 2. 40 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 2. 41 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 2. 42 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 2. 43 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống