Giải bài 4.7 trang 50 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Cho hai vectơ không cùng phương. Chứng minh rằng
Đề bài
Cho hai vectơ →a và →b không cùng phương. Chứng minh rằng
|→a|−|→b|<|→a+→b|<|→a|+|→b|
Phương pháp giải - Xem chi tiết
- Gọi điểm O bất kỳ, →OA=→a,→AB=→b
- Tính →OB
- Áp dụng bất đẳng thức tam giác
Lời giải chi tiết
Gọi điểm O bất kỳ, vẽ vectơ →OA=→a,→AB=→b
⇒ →OB=→OA+→AB=→a+→b
Vì hai vectơ →a và →b không cùng phương nên O,A,B không thẳng hàng.
Xét ΔABC, áp dụng bất đẳng thức tam giác ta có:
OA−AB<OB<OA+AB⇔|→a|−|→b|<|→a+→b|<|→a|+|→b|
Cùng chủ đề:
Giải bài 4. 7 trang 50 sách bài tập toán 10 - Kết nối tri thức với cuộc sống