Giải bài 5 trang 50 SGK Toán 8 tập 2– Chân trời sáng tạo — Không quảng cáo

Toán 8, giải toán lớp 8 chân trời sáng tạo Bài 1. Định lí Thalès trong tam giác Toán 8 chân trời s


Giải bài 5 trang 50 SGK Toán 8 tập 2– Chân trời sáng tạo

Tính các độ dài

Đề bài

Tính các độ dài \(x,y\) trong Hình 23.

Phương pháp giải - Xem chi tiết

Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh thứ ba thì tạo ra một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.

Lời giải chi tiết

a) Ta có: \(AC = AK + KC = 3 + 1,5 = 4,5\)

Xét tam giác \(ABC\) có \(HK//BC\) nên theo hệ quả của định lí Thales ta có:

\(\frac{{HK}}{{BC}} = \frac{{AK}}{{AC}} \Rightarrow \frac{x}{6} = \frac{3}{{4,5}}\). Do đó, \(x = \frac{{3.6}}{{4,5}} = 4\).

Vậy \(x = 4\).

b) Ta có: \(MH = MQ + QH = x + 1,8\)

Xét tam giác \(MNH\) có \(PQ//NH\) nên theo hệ quả của định lí Thales ta có:

\(\frac{{PQ}}{{NH}} = \frac{{MQ}}{{MH}} \Rightarrow \frac{{3,8}}{{6,4}} = \frac{x}{{x + 1,8}}\). Do đó, \(6,4x = 3,8.\left( {x + 1,8} \right)\)

\( \Leftrightarrow 6,4x = 3,8x + 6,84\)

\( \Leftrightarrow 6,4x - 3,8x = 6,84\)

\( \Leftrightarrow 2,6x = 6,84\)

\( \Leftrightarrow x = 6,84:2,6\)

\( \Leftrightarrow x = \frac{{171}}{{65}}\).

Vậy \(x = \frac{{171}}{{65}}\).

c) Vì \(\left\{ \begin{array}{l}DE \bot AD\\AB \bot AD\end{array} \right. \Rightarrow DE//AB\) (quan hệ từ vuông góc đến song song).

Xét \(\Delta CDE\) vuông tại \(D\) ta có:

\(E{D^2} + D{C^2} = E{C^2}\) (Định lí Py- ta – go)

\( \Leftrightarrow {8^2} + {6^2} = E{C^2}\)

\( \Leftrightarrow E{C^2} = 100\)

\( \Leftrightarrow EC = 10\)

Xét tam giác \(ABC\) có \(DE//AB\) nên theo hệ quả của định lí Thales ta có:

\(\left\{ \begin{array}{l}\frac{{AC}}{{DC}} = \frac{{AB}}{{ED}} \Rightarrow \frac{5}{6} = \frac{x}{8}\\\frac{{AC}}{{DC}} = \frac{{BC}}{{EC}} \Rightarrow \frac{5}{6} = \frac{y}{{10}}\end{array} \right.\). Do đó, \(\left\{ \begin{array}{l}x = \frac{{5.8}}{6} = \frac{{20}}{3}\\y = \frac{{5.10}}{6} = \frac{{25}}{3}\end{array} \right.\).

Vậy \(x = \frac{{20}}{3};y = \frac{{25}}{3}\).


Cùng chủ đề:

Giải bài 4 trang 94 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 4 trang 95 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 4 trang 97 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 4 trang 107 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 4 trang 113 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 5 trang 50 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 5 trang 54 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 5 trang 57 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 5 trang 58 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 5 trang 62 SGK Toán 8 – Chân trời sáng tạo
Giải bài 5 trang 66 SGK Toán 8 tập 2– Chân trời sáng tạo