Giải bài 7 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo — Không quảng cáo

Toán 10, giải toán lớp 10 chân trời sáng tạo Bài 2. Định lí cosin và định lí sin Toán 10 Chân trời s


Giải bài 7 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo

Cho tam giác ABC có trọng tâm G và độ dài ba cạnh AB, BC, CA lần lượt là 15, 18, 27. a) Tính diện tích và bán kính đường tròn nội tiếp tam giác ABC. b) Tính diện tích tam giác GBC.

Đề bài

Cho tam giác ABC có trọng tâm G và độ dài ba cạnh AB, BC, CA lần lượt là 15, 18, 27.

a) Tính diện tích và bán kính đường tròn nội tiếp tam giác ABC.

b) Tính diện tích tam giác GBC.

Phương pháp giải - Xem chi tiết

a) Tính r bằng công thức: \(S = p.r\). Trong đó S tính bởi công thức heron.

b) Tìm a, từ đó suy ra R bằng định lí sin => Tính diện tích tam giác IBC

Lời giải chi tiết

a) Đặt \(a = BC,b = AC,c = AB.\)

Ta có: \(p = \frac{1}{2}(15 + 18 + 27) = 30\)

Áp dụng công thức heron, ta có:

\({S_{ABC}} = \sqrt {30(30 - 15)(30 - 18)(30 - 27)}  = 90\sqrt 2 \)

Và \(r = \frac{S}{p} = \frac{{90\sqrt 2 }}{{30}} = 3\sqrt 2 \)

b) Gọi, H, K lần lượt là chân đường cao hạ từ A và G xuống BC, M là trung điểm BC.

G là trọng tâm tam giác ABC nên \(GM = \frac{1}{3}AM\)

\(\begin{array}{l} \Rightarrow GK = \frac{1}{3}.AH\\ \Rightarrow {S_{GBC}} = \frac{1}{3}.\,{S_{ABC}} = \frac{1}{3}.90\sqrt 2  = 30\sqrt 2 .\end{array}\)


Cùng chủ đề:

Giải bài 7 trang 48 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 7 trang 56 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 7 trang 58 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 7 trang 59 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 7 trang 65 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 7 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 7 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 7 trang 79 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 7 trang 86 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 7 trang 87 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 7 trang 93 SGK Toán 10 tập 1 – Chân trời sáng tạo