Giải Bài 8 trang 41 SGK Toán 8 tập 2 – Chân trời sáng tạo — Không quảng cáo

Toán 8, giải toán lớp 8 chân trời sáng tạo Bài tập cuối chương 6 Toán 8 chân trời sáng tạo


Giải Bài 8 trang 41 SGK Toán 8 tập 2 – Chân trời sáng tạo

Giải các phương trình sau:

Giải các phương trình sau:

a.

\(10 - \left( {x - 5} \right) = 20\);

Phương pháp giải:

Để giải phương trình ta có thể sử dụng các quy tắc sau:

- Chuyển một số hạng từ vế bên này sang vế bên kia và đổi dấu số hạng (Quy tắc chuyển vế);

- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);

- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).

- Khi bỏ dấu ngoặc mà đằng trước dấu ngoặc có dấu cộng, ta bỏ ngoặc và giữ nguyên dấu của các số hạng trong ngoặc. Khi bỏ dấu ngoặc mà đằng trước dấu ngoặc có dấu  trừ, ta bỏ ngoặc và đổi dấu các số hạng trong ngoặc (Quy tắc dấu ngoặc).

Lời giải chi tiết:

\(10 - \left( {x - 5} \right) = 20\)

\( - \left( {x - 5} \right) = 20 - 10\)

\( - \left( {x - 5} \right) = 10\)

\( - x + 5 = 10\)

\( - x = 10 - 5\)

\( - x = 5\)

\(x =  - 5\)

Vậy phương trình có nghiệm là \(x =  - 5\).

b.

\( - 12 + 3\left( {1,5 - 3u} \right) = 15\);

Phương pháp giải:

Để giải phương trình ta có thể sử dụng các quy tắc sau:

- Chuyển một số hạng từ vế bên này sang vế bên kia và đổi dấu số hạng (Quy tắc chuyển vế);

- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);

- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).

- Khi bỏ dấu ngoặc mà đằng trước dấu ngoặc có dấu cộng, ta bỏ ngoặc và giữ nguyên dấu của các số hạng trong ngoặc. Khi bỏ dấu ngoặc mà đằng trước dấu ngoặc có dấu  trừ, ta bỏ ngoặc và đổi dấu các số hạng trong ngoặc (Quy tắc dấu ngoặc).

Lời giải chi tiết:

\( - 12 + 3\left( {1,5 - 3u} \right) = 15\)

\(3\left( {1,5 - 3u} \right) = 15 + 12\)

\(3\left( {1,5 - 3u} \right) = 27\)

\(1,5 - 3u = 27:3\)

\(1,5 - 3u = 9\)

\( - 3u = 9 - 1,5\)

\( - 3u = 7,5\)

\(u = 7,5:\left( { - 3} \right)\)

\(u =  - 2,5\)

Vậy phương trình có nghiệm là \(u =  - 2,5\).

c.

\({\left( {x + 2} \right)^2} - x\left( {x - 3} \right) =  - 12\);

Phương pháp giải:

Để giải phương trình ta có thể sử dụng các quy tắc sau:

- Chuyển một số hạng từ vế bên này sang vế bên kia và đổi dấu số hạng (Quy tắc chuyển vế);

- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);

- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).

- Khi bỏ dấu ngoặc mà đằng trước dấu ngoặc có dấu cộng, ta bỏ ngoặc và giữ nguyên dấu của các số hạng trong ngoặc. Khi bỏ dấu ngoặc mà đằng trước dấu ngoặc có dấu  trừ, ta bỏ ngoặc và đổi dấu các số hạng trong ngoặc (Quy tắc dấu ngoặc).

Lời giải chi tiết:

\({\left( {x + 2} \right)^2} - x\left( {x - 3} \right) =  - 12\)

\(\left( {{x^2} + 4x + 4} \right) - \left( {{x^2} - 3x} \right) =  - 12\)

\({x^2} + 4x + 4 - {x^2} + 3x =  - 12\)

\(\left( {{x^2} - {x^2}} \right) + \left( {4x + 3x} \right) =  - 12 - 4\)

\(7x =  - 16\)

\(x = \left( { - 16} \right):7\)

\(x = \frac{{ - 16}}{7}\)

Vậy phương trình có nghiệm là \(x = \frac{{ - 16}}{7}\).

d.

\(\left( {x + 5} \right)\left( {x - 5} \right) - {\left( {x - 3} \right)^2} = 6\).

Phương pháp giải:

Để giải phương trình ta có thể sử dụng các quy tắc sau:

- Chuyển một số hạng từ vế bên này sang vế bên kia và đổi dấu số hạng (Quy tắc chuyển vế);

- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);

- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).

- Khi bỏ dấu ngoặc mà đằng trước dấu ngoặc có dấu cộng, ta bỏ ngoặc và giữ nguyên dấu của các số hạng trong ngoặc. Khi bỏ dấu ngoặc mà đằng trước dấu ngoặc có dấu  trừ, ta bỏ ngoặc và đổi dấu các số hạng trong ngoặc (Quy tắc dấu ngoặc).

Lời giải chi tiết:

\(\left( {x + 5} \right)\left( {x - 5} \right) - {\left( {x - 3} \right)^2} = 6\)

\(\left( {{x^2} - 25} \right) - \left( {{x^2} - 6x + 9} \right) = 6\)

\({x^2} - 25 - {x^2} + 6x - 9 = 6\)

\(\left( {{x^2} - {x^2}} \right) + 6x = 6 + 25 + 9\)

\(6x = 40\)

\(x = 40:6\)

\(x = \frac{{20}}{3}\)

Vậy phương trình có nghiệm là \(x = \frac{{20}}{3}\).


Cùng chủ đề:

Giải Bài 8 trang 22 SGK Toán 8 tập 1 – Chân trời sáng tạo
Giải Bài 8 trang 26 SGK Toán 8 tập 2 – Chân trời sáng tạo
Giải Bài 8 trang 28 SGK Toán 8 tập 2 – Chân trời sáng tạo
Giải Bài 8 trang 40 SGK Toán 8 tập 1 – Chân trời sáng tạo
Giải Bài 8 trang 40 SGK Toán 8 tập 2 – Chân trời sáng tạo
Giải Bài 8 trang 41 SGK Toán 8 tập 2 – Chân trời sáng tạo
Giải Bài 8 trang 55 SGK Toán 8 tập 1 – Chân trời sáng tạo
Giải Bài 9 trang 17 SGK Toán 8 tập 1 – Chân trời sáng tạo
Giải Bài 9 trang 22 SGK Toán 8 tập 1 – Chân trời sáng tạo
Giải Bài 9 trang 27 SGK Toán 8 tập 2 – Chân trời sáng tạo
Giải Bài 9 trang 28 SGK Toán 8 tập 2 – Chân trời sáng tạo