Giải Bài 9 trang 22 SGK Toán 8 tập 1 – Chân trời sáng tạo — Không quảng cáo

Toán 8, giải toán lớp 8 chân trời sáng tạo Bài 3. Hằng đẳng thức đáng nhớ Toán 8 chân trời sáng tạo


Giải Bài 9 trang 22 SGK Toán 8 tập 1 – Chân trời sáng tạo

a) Cho (x + y = 12) và (xy = 35). Tính ({left( {x - y} right)^2}) b) Cho (x - y = 8) và (xy = 20). Tính ({left( {x + y} right)^2}) c) Cho (x + y = 5) và (xy = 6). Tính ({x^3} + {y^3}) d) Cho (x - y = 3) và (xy = 40). Tính ({x^3} - {y^3})

Đề bài

a) Cho \(x + y = 12\) và \(xy = 35\). Tính \({\left( {x - y} \right)^2}\)

b) Cho \(x - y = 8\) và \(xy = 20\). Tính \({\left( {x + y} \right)^2}\)

c) Cho \(x + y = 5\) và \(xy = 6\). Tính \({x^3} + {y^3}\)

d) Cho \(x - y = 3\) và \(xy = 40\). Tính \({x^3} - {y^3}\)

Phương pháp giải - Xem chi tiết

a) Áp dụng hằng đẳng thức bình phương của một hiệu và bình phương của một tổng

b) Áp dụng hằng đẳng thức bình phương của một tổng

c) Áp dụng hằng đẳng thức tổng của hai lập phương

d) Áp dụng hằng đẳng thức hiệu của hai lập phương

Lời giải chi tiết

a) Ta có: \({\left( {x - y} \right)^2} = {x^2} - 2xy + {y^2} = {x^2} + {y^2} - 2xy = {\left( {x + y} \right)^2} - 4xy\)

Thay \(x + y = 12\) và \(xy = 35\) vào biểu thức trên ta có:

\({12^2} - 4.35 = 144 - 140 = 4\)

Vậy \({\left( {x - y} \right)^2} = 4\) khi \(x + y = 12\), \(xy = 35\)

b) Ta có: \({\left( {x + y} \right)^2} = {x^2} + 2xy + {y^2} = {x^2} + {y^2} + 2xy = {\left( {x - y} \right)^2} + 4xy\)

Thay \(x - y = 8\); \(xy = 20\) vào biểu thức ta có:

\({8^2} + 4.20 = 64 + 80 = 144\)

Vậy \({\left( {x + y} \right)^2} = 44\) khi \(x - y = 8\); \(xy = 20\)

c) Ta có: \({x^3} + {y^3} = {\left( {x + y} \right)^3} - 3{x^2}y - 3x{y^2} = {\left( {x + y} \right)^3} - 3xy\left( {x + y} \right)\)

Thay \(x + y = 5\); \(xy = 6\) vào biểu thức ta có:

\({5^3} - 3.6.5 = 125 - 90 = 35\)

Vậy \({x^3} + {y^3} = 35\) khi \(x + y = 5\); \(xy = 6\)

d) Ta có: \({x^3} - {y^3} = {\left( {x - y} \right)^3} + 3{x^2}y - 3x{y^2} = {\left( {x - y} \right)^3} + 3xy\left( {x - y} \right)\)

Thay \(x - y = 3\); \(xy = 40\) vào biểu thức ta có:

\({3^3} + 3.40.3 = 27 + 360 = 387\)

Vậy \({x^3} - {y^3} = 387\) khi \(x - y = 3\); \(xy = 40\)


Cùng chủ đề:

Giải Bài 8 trang 40 SGK Toán 8 tập 1 – Chân trời sáng tạo
Giải Bài 8 trang 40 SGK Toán 8 tập 2 – Chân trời sáng tạo
Giải Bài 8 trang 41 SGK Toán 8 tập 2 – Chân trời sáng tạo
Giải Bài 8 trang 55 SGK Toán 8 tập 1 – Chân trời sáng tạo
Giải Bài 9 trang 17 SGK Toán 8 tập 1 – Chân trời sáng tạo
Giải Bài 9 trang 22 SGK Toán 8 tập 1 – Chân trời sáng tạo
Giải Bài 9 trang 27 SGK Toán 8 tập 2 – Chân trời sáng tạo
Giải Bài 9 trang 28 SGK Toán 8 tập 2 – Chân trời sáng tạo
Giải Bài 9 trang 40 SGK Toán 8 tập 1 – Chân trời sáng tạo
Giải Bài 9 trang 41 SGK Toán 8 tập 2 – Chân trời sáng tạo
Giải Bài 9 trang 55 SGK Toán 8 tập 1 – Chân trời sáng tạo