Giải bài2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo — Không quảng cáo

Toán 10, giải toán lớp 10 chân trời sáng tạo Bài 3. Phương trình quy về phương trình bậc hai Toán 10


Giải bài2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo

Giải các phương trình sau

Đề bài

Giải các phương trình sau:

a) \(\sqrt {{x^2} + 3x + 1}  = 3\)

b) \(\sqrt {{x^2} - x - 4}  = x + 2\)

c) \(2 + \sqrt {12 - 2x}  = x\)

d) \(\sqrt {2{x^2} - 3x - 10}  =  - 5\)

Phương pháp giải - Xem chi tiết

Bước 1: Chuyển biểu thức có căn về một vế

Bước 2: Bình phương hai vế của phương trình để làm mất dấu căn

Bước 3: Chuyển vế, rút gọn đưa về phương trình bậc hai một ẩn

Bước 4: Giải phương trình nhận được ở bước 2

Bước 5: Thử lại nghiệm và kết luận

Lời giải chi tiết

a) \(\sqrt {{x^2} + 3x + 1}  = 3\)

\(\begin{array}{l} \Rightarrow {x^2} + 3x + 1 = 9\\ \Rightarrow {x^2} + 3x - 8 = 0\end{array}\)

\( \Rightarrow x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

Thay hai nghiệm trên vào phương trình \(\sqrt {{x^2} + 3x + 1}  = 3\) ta thấy cả hai nghiệm đều thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

b) \(\sqrt {{x^2} - x - 4}  = x + 2\)

\(\begin{array}{l} \Rightarrow {x^2} - x - 4 = {\left( {x + 2} \right)^2}\\ \Rightarrow {x^2} - x - 4 = {x^2} + 4x + 4\\ \Rightarrow 5x =  - 8\\ \Rightarrow x =  - \frac{8}{5}\end{array}\)

Thay \(x =  - \frac{8}{5}\) và phương trình \(\sqrt {{x^2} - x - 4}  = x + 2\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x =  - \frac{8}{5}\)

c) \(2 + \sqrt {12 - 2x}  = x\)

\(\begin{array}{l} \Rightarrow \sqrt {12 - 2x}  = x - 2\\ \Rightarrow 12 - 2x = {\left( {x - 2} \right)^2}\\ \Rightarrow 12 - 2x = {x^2} - 4x + 4\\ \Rightarrow {x^2} - 2x - 8 = 0\end{array}\)

\( \Rightarrow x =  - 2\) và \(x = 4\)

Thay hai nghiệm vừa tìm được vào phương trình \(2 + \sqrt {12 - 2x}  = x\) thì thấy chỉ có \(x = 4\) thỏa mãn

Vậy \(x = 4\) là nghiệm của phương trình đã cho.

d) Ta có biểu thức căn bậc hai luôn không âm nên \(\sqrt {2{x^2} - 3x - 10}  \ge 0\forall x \in \mathbb{R}\)

\( \Rightarrow \sqrt {2{x^2} - 3x - 10}  =  - 5\) (vô lí)

Vậy phương trình đã cho vô nghiệm


Cùng chủ đề:

Giải Toán 10 chương VII bất phương trình bậc hai một ẩn
Giải Toán 10 chương VIII Đại số tổ hợp
Giải Toán 10 chương X xác suất
Giải Toán 10 tập 1 chân trời sáng tạo có lời giải chi tiết
Giải Toán 10 tập 2 chân trời sáng tạo có lời giải chi tiết
Giải bài2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 1 trang 9 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 1 trang 12 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 1 trang 14 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 1 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo