Giải mục 1 trang 19, 20 SGK Toán 8 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 8, giải toán lớp 8 kết nối tri thức với cuộc sống Bài 4. Phép nhân đa thức Toán 8 kết nối tri thức


Giải mục 1 trang 19, 20 SGK Toán 8 tập 1 - Kết nối tri thức

Luyện tập 1 trang 19 Nhân hai đơn thức:

Luyện tập 1

Nhân hai đơn thức:

a)      \(3{x^2}\) và \(2{x^3}\)

b)      \( - xy\) và \(4{z^3}\)

c)      \(6x{y^3}\) và \( - 0,5{x^2}\)

Phương pháp giải:

Nối hai đơn thức với nhau bởi dấu nhân rồi bỏ dấu ngoặc (nếu có) và thu gọn đơn thức nhận được.

Lời giải chi tiết:

a)      \(3{x^2}.2{x^3} = \left( {3.2} \right).\left( {{x^2}.{x^3}} \right) = 6{x^5}\)

b)      \(\left( { - xy} \right).4{z^3} =  - 4xy{z^3}\)

c)      \(6x{y^3}.\left( { - 0,5{x^2}} \right) = \left[ {6.\left( { - 0.5} \right)} \right].\left( {x.{x^2}} \right).{y^3} =  - 3{x^3}y^3\)

HĐ1

Hãy nhớ lại quy tắc nhân đơn thức với đa thức trong trường hợp chúng có một biến bằng cách thực hiện phép nhân \(\left( {5{x^2}} \right).\left( {3{x^2} - x - 4} \right)\)

Phương pháp giải:

Nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.

Lời giải chi tiết:

\(\begin{array}{l}\left( {5{x^2}} \right).\left( {3{x^2} - x - 4} \right)\\ = 5{x^2}.3{x^2} - 5{x^2}.x - 5{x^2}.4\\ = 15{x^4} - 5{x^3} - 20{x^2}\end{array}\)

HĐ2

Bằng cách tương tự, hãy làm phép nhân \(\left( {5{x^2}y} \right).\left( {3{x^2}y - xy - 4y} \right)\).

Phương pháp giải:

Nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.

Lời giải chi tiết:

\(\begin{array}{l}\left( {5{x^2}y} \right).\left( {3{x^2}y - xy - 4y} \right)\\ = 5{x^2}y.3{x^2}y - 5{x^2}y.xy - 5{x^2}y.4y\\ = 15{x^4}{y^2} - 5{x^3}{y^2} - 20{x^2}{y^2}\end{array}\)

Luyện tập 2

Làm tính nhân:

a)      \(\left( {xy} \right).\left( {{x^2} + xy - {y^2}} \right)\);

b)      \(\left( {xy + yz + zx} \right).\left( { - xyz} \right)\).

Phương pháp giải:

Nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.

Lời giải chi tiết:

a)

\(\begin{array}{l}\left( {xy} \right).\left( {{x^2} + xy - {y^2}} \right)\\ = xy.{x^2} + xy.xy - xy.{y^2}\\ = {x^3}y + {x^2}{y^2} - x{y^3}\end{array}\)

b)

\(\begin{array}{l}\left( {xy + yz + zx} \right).\left( { - xyz} \right)\\ = xy.\left( { - xyz} \right) + yz.\left( { - xyz} \right) + zx.\left( { - xyz} \right)\\ =  - {x^2}{y^2}z - x{y^2}{z^2} - {x^2}y{z^2}\end{array}\)

Vận dụng

Rút gọn biểu thức: \({x^3}\left( {x + y} \right) - x\left( {{x^3} + {y^3}} \right)\).

Phương pháp giải:

Muốn nhân đơn thức với đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau. Sau đó, nhóm các hạng tử đồng dạng để thu gọn đa thức.

Lời giải chi tiết:

\(\begin{array}{l}{x^3}\left( {x + y} \right) - x\left( {{x^3} + {y^3}} \right)\\ = {x^3}.x + {x^3}.y - \left( {x.{x^3} + x.{y^3}} \right)\\ = {x^4} + {x^3}y - {x^4} - x{y^3}\\ = \left( {{x^4} - {x^4}} \right) + {x^3}y - x{y^3}\\ = {x^3}y - x{y^3}\end{array}\)


Cùng chủ đề:

Giải mục 1 trang 5, 6 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 1 trang 6, 7, 8 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 1 trang 8, 9 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 1 trang 11, 12 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 1 trang 15, 16 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 1 trang 19, 20 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 1 trang 20 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 1 trang 22, 23 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 1 trang 27, 28 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 1 trang 30 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 1 trang 34, 35 SGK Toán 8 tập 1 - Kết nối tri thức