Giải mục 2 trang 12, 13 SGK Toán 8 tập 1 - Cánh diều — Không quảng cáo

Toán 8, giải toán lớp 8 cánh diều Bài 2. Các phép tính với đa thức nhiều biến Toán 8 cánh


Giải mục 2 trang 12, 13 SGK Toán 8 tập 1 - Cánh diều

Cho hai đa thức: (P = {x^2} + 2{rm{x}}y + {y^2}) và (Q = {x^2} - 2{rm{x}}y + {y^2}) a) Viết hiệu P – Q theo hàng ngang, trong đó đa thức Q được đặt trong dấu ngoặc b) Sau khi bỏ dấu ngoặc và đổi dấu mỗi đơn thức của đa thức Q, nhóm các đơn thức đồng dạng với nhau. c) Tính hiệu P – Q bằng cách thực hiện phép tính trong từng nhóm .

HĐ 2

Cho hai đa thức: \(P = {x^2} + 2{\rm{x}}y + {y^2}\) và \(Q = {x^2} - 2{\rm{x}}y + {y^2}\)

a) Viết hiệu P – Q theo hàng ngang, trong đó đa thức Q được đặt trong dấu ngoặc

b) Sau khi bỏ dấu ngoặc và đổi dấu mỗi đơn thức của đa thức Q, nhóm các đơn thức đồng dạng với nhau.

c) Tính hiệu P – Q bằng cách thực hiện phép tính trong từng nhóm .

Phương pháp giải:

- Viết hiệu P – Q theo hàng ngang

- Bỏ dấu ngoặc rồi đổi dấu các hạng tử, nhóm các đơn thức đồng dạng và thực hiện phép tính.

Lời giải chi tiết:

a)

\(P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\)

b)

\(\begin{array}{l}P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P - Q = {x^2} + 2{\rm{x}}y + {y^2} - {x^2} + 2{\rm{x}}y - {y^2}\\P - Q = \left( {{x^2} - {x^2}} \right) + \left( {2{\rm{x}}y + 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\end{array}\)

c)

\(\begin{array}{l}P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P - Q = {x^2} + 2{\rm{x}}y + {y^2} - {x^2} + 2{\rm{x}}y - {y^2}\\P - Q = \left( {{x^2} - {x^2}} \right) + \left( {2{\rm{x}}y + 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\\P - Q = 4{\rm{x}}y\end{array}\)

LT 2

Với ba đa thức: \(A = {x^2} - 2{\rm{x}}y + {y^2};B = 2{{\rm{x}}^2} - {y^2};C = {x^2} - 3{\rm{x}}y\)(ở trong ví dụ 3). Hãy tính:

a) B – C

b) (B – C) + A

Phương pháp giải:

Thực hiện theo quy tắc cộng, trừ đa thức nhiều biến.

Lời giải chi tiết:

a) Ta có:

\(\begin{array}{l}B - C = \left( {2{{\rm{x}}^2} - {y^2}} \right) - \left( {{x^2} - 3{\rm{x}}y} \right)\\B - C = 2{{\rm{x}}^2} - {y^2} - {x^2} + 3{\rm{x}}y\\B - C = \left( {2{{\rm{x}}^2} - {x^2}} \right) + 3{\rm{x}}y - {y^2} = {x^2} + 3{\rm{x}}y - {y^2}\end{array}\)

b) Ta có:

\(\begin{array}{l}(B - C) + A = {\rm{[}}\left( {2{{\rm{x}}^2} - {y^2}} \right) - \left( {{x^2} - 3{\rm{x}}y} \right){\rm{] + (}}{{\rm{x}}^2} - 2{\rm{x}}y + {y^2})\\(B - C) + A = {x^2} + 3{\rm{x}}y - {y^2} + {x^2} - 2{\rm{x}}y + {y^2}\\(B - C) + A = \left( {{x^2} + {x^2}} \right) + \left( {3{\rm{x}}y - 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\\(B - C) + A = 2{{\rm{x}}^2} + xy\end{array}\)


Cùng chủ đề:

Giải mục 1 trang 113 SGK Toán 8 tập 1 - Cánh diều
Giải mục 1 trang 116 SGK Toán 8 tập 1 - Cánh diều
Giải mục 2 trang 4, 5 SGK Toán 8 – Cánh diều
Giải mục 2 trang 8,9,10 SGK Toán 8 tập 1 - Cánh diều
Giải mục 2 trang 9, 10, 11, 12 SGK Toán 8 – Cánh diều
Giải mục 2 trang 12, 13 SGK Toán 8 tập 1 - Cánh diều
Giải mục 2 trang 18, 19, 20, 21, 22 SGK Toán 8 tập 1 - Cánh diều
Giải mục 2 trang 22, 23 SGK Toán 8 – Cánh diều
Giải mục 2 trang 25, 26 SGK Toán 8 tập 1 - Cánh diều
Giải mục 2 trang 27 SGK Toán 8 – Cánh diều
Giải mục 2 trang 31, 32, 33, 34 SGK Toán 8 tập 1 - Cánh diều