Giải mục 2 trang 12, 13 SGK Toán 9 tập 2 - Kết nối tri thức — Không quảng cáo

Toán 9 kết nối tri thức


Giải mục 2 trang 12, 13 SGK Toán 9 tập 2 - Kết nối tri thức

Giải các phương trình sau: a) (2{x^2} + 6x = 0); b) (5{x^2} + 11x = 0).

LT2

Trả lời câu hỏi Luyện tập 2 trang 12 SGK Toán 9 Kết nối tri thức

Giải các phương trình sau:

a) \(2{x^2} + 6x = 0\);

b) \(5{x^2} + 11x = 0\).

Phương pháp giải:

Các bước giải phương trình:

+ Bước 1: Đưa phương trình về dạng: \(A.B = 0\).

+ Bước 2: Nếu \(A.B = 0\) thì \(A = 0\) hoặc \(B = 0\). Giải các phương trình đó và kết luận.

Lời giải chi tiết:

a) \(2{x^2} + 6x = 0\)

\(2x\left( {x + 3} \right) = 0\)

\(x = 0\) hoặc \(x =  - 3\)

Vậy phương trình có hai nghiệm \(x = 0\); \(x =  - 3\).

b) \(5{x^2} + 11x = 0\)

\(x\left( {5x + 11} \right) = 0\)

\(x = 0\) hoặc \(x =  - \frac{{11}}{5}\)

Vậy phương trình có hai nghiệm \(x = 0\); \(x =  - \frac{{11}}{5}\).

LT3

Trả lời câu hỏi Luyện tập 3 trang 12 SGK Toán 9 Kết nối tri thức

Giải các phương trình sau:

a) \({x^2} - 25 = 0\);

b) \({\left( {x + 3} \right)^2} = 5\).

Phương pháp giải:

Các bước giải phương trình:

+ Bước 1: Đưa phương trình về dạng: \({A^2} = B\left( {B \ge 0} \right)\).

+ Bước 2: Nếu \({A^2} = B\left( {B \ge 0} \right)\) thì \(A = \sqrt B \) hoặc \(A =  - \sqrt B \). Giải các phương trình đó và kết luận.

Lời giải chi tiết:

a) \({x^2} - 25 = 0\)

\({x^2} = 25\)

\(x = 5\) hoặc \(x =  - 5\)

Vậy phương trình có hai nghiệm \(x = 5\); \(x =  - 5\).

b) \({\left( {x + 3} \right)^2} = 5\)

\(x + 3 = \sqrt 5 \) hoặc \(x + 3 =  - \sqrt 5 \)

\(x =  - 3 + \sqrt 5 \) hoặc \(x =  - 3 - \sqrt 5 \)

Vậy phương trình có hai nghiệm \(x =  - 3 + \sqrt 5 \); \(x =  - 3 - \sqrt 5 \).

LT4

Trả lời câu hỏi Luyện tập 4 trang 13 SGK Toán 9 Kết nối tri thức

Cho phương trình \({x^2} + 6x = 1\). Hãy cộng vào cả hai vế của phương trình với cùng một số thích hợp để được một phương trình mà vế trái có thể biến đổi thành một bình phương. Từ đó, giải phương trình đã cho.

Phương pháp giải:

Các bước giải phương trình:

+ Bước 1: Cộng thêm 9 vào 2 vế để đưa phương trình về dạng: \({A^2} = B\left( {B \ge 0} \right)\).

+ Bước 2: Nếu \({A^2} = B\left( {B \ge 0} \right)\) thì \(A = \sqrt B \) hoặc \(A =  - \sqrt B \). Giải các phương trình đó và kết luận.

Lời giải chi tiết:

\({x^2} + 6x = 1\)

\({x^2} + 2.x.3 + {3^2} = 1 + 9\)

\({\left( {x + 3} \right)^2} = 10\)

\(x + 3 = \sqrt {10} \) hoặc \(x + 3 =  - \sqrt {10} \)

\(x =  - 3 + \sqrt {10} \)       \(x =  - 3 - \sqrt {10} \)

Vậy phương trình có hai nghiệm \(x =  - 3 + \sqrt {10} \); \(x =  - 3 - \sqrt {10} \).


Cùng chủ đề:

Giải mục 1 trang 102 SGK Toán 9 tập 2 - Kết nối tri thức
Giải mục 1 trang 104, 105 SGK Toán 9 tập 1 - Kết nối tri thức
Giải mục 1 trang 122 SGK Toán 9 tập 2 - Kết nối tri thức
Giải mục 2 trang 6, 7, 8 SGK Toán 9 tập 2 - Kết nối tri thức
Giải mục 2 trang 9 SGK Toán 9 tập 1 - Kết nối tri thức
Giải mục 2 trang 12, 13 SGK Toán 9 tập 2 - Kết nối tri thức
Giải mục 2 trang 13, 14 SGK Toán 9 tập 1 - Kết nối tri thức
Giải mục 2 trang 22, 23 SGK Toán 9 tập 2 - Kết nối tri thức
Giải mục 2 trang 28, 29 SGK Toán 9 tập 1 - Kết nối tri thức
Giải mục 2 trang 33, 34 SGK Toán 9 tập 1 - Kết nối tri thức
Giải mục 2 trang 34, 35, 36 SGK Toán 9 tập 2 - Kết nối tri thức