Giải mục 2 trang 28, 29 SGK Toán 9 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 9 kết nối tri thức


Giải mục 2 trang 28, 29 SGK Toán 9 tập 1 - Kết nối tri thức

Xét phương trình (x + frac{1}{{x + 1}} = - 1 + frac{1}{{x + 1}}.) Chuyển các biểu thức chứa ẩn từ vế phải sang vế trái, rồi thu gọn vế trái.

HĐ3

Trả lời câu hỏi Hoạt động 3 trang 28 SGK Toán 9 Kết nối tri thức

Xét phương trình \(x + \frac{1}{{x + 1}} =  - 1 + \frac{1}{{x + 1}}.\)

Chuyển các biểu thức chứa ẩn từ vế phải sang vế trái, rồi thu gọn vế trái.

Phương pháp giải:

Chú ý: Quy tắc chuyển vế đổi dấu.

Lời giải chi tiết:

Ta có \(x + \frac{1}{{x + 1}} =  - 1 + \frac{1}{{x + 1}}\) hay \(x + \frac{1}{{x + 1}} - \frac{1}{{x + 1}} = - 1\) suy ra \(x = -1\)

HĐ4

Trả lời câu hỏi Hoạt động 4 trang 28 SGK Toán 9 Kết nối tri thức

Xét phương trình \(x + \frac{1}{{x + 1}} =  - 1 + \frac{1}{{x + 1}}.\)

Giá trị \(x =  - 1\) có là nghiệm của phương trình đã cho hay không? Vì sao?

Phương pháp giải:

Để kiểm tra \(x = {x_0}\) là nghiệm của một phương trình tức là thay \(x = {x_0}\) vào phương trình đã cho, nếu kết quả thu được khẳng định đúng thì \(x = {x_0}\) là nghiệm của phương trình.

Lời giải chi tiết:

Thay \(x =  - 1\) vào phương trình đã cho ta có \(\left( { - 1} \right) + \frac{1}{{ - 1 + 1}} =  - 1 + \frac{1}{{ - 1 + 1}}\), ta có kết quả đã cho chưa đúng vì khi thay \(x =  - 1\) làm cho mẫu của phân số bằng 0.

Vậy \(x =  - 1\) không là nghiệm của phương trình.

LT2

Trả lời câu hỏi Luyện tập 2 trang 28 SGK Toán 9 Kết nối tri thức

Tìm điều kiện xác định của mỗi phương trình sau:

a) \(\frac{{3x + 1}}{{2x - 1}} = 1;\)

b) \(\frac{x}{{x - 1}} + \frac{{x + 1}}{x} = 2.\)

Phương pháp giải:

Điều kiện xác định của phương trình chứa ẩn ở mẫu là tìm x để mẫu thức của phương trình khác 0.

Lời giải chi tiết:

a) \(\frac{{3x + 1}}{{2x - 1}} = 1;\)

Vì \(2x - 1 \ne 0\) khi \(x \ne \frac{1}{2}.\)

Vậy ĐKXĐ của phương trình đã cho là \(x \ne \frac{1}{2}.\)

b) \(\frac{x}{{x - 1}} + \frac{{x + 1}}{x} = 2.\)

Vì \(x - 1 \ne 0\) khi \(x \ne 1\) và \(x \ne 0\).

Vậy ĐKXĐ của phương trình đã cho là \(x \ne 1\) và \(x \ne 0\).

HĐ5

Trả lời câu hỏi Hoạt động 5 trang 29 SGK Toán 9 Kết nối tri thức

Xét phương trình \(\frac{{x + 3}}{x} = \frac{{x + 9}}{{x - 3}}.\left( 2 \right)\)

Hãy thực hiện các yêu cầu sau để giải phương trình (2):

a) Tìm điều kiện xác định của phương trình (2);

b) Quy đồng mẫu hai vế của phương trình (2), rồi khử mẫu;

c) Giải phương trình vừa tìm được;

d) Kết luận nghiệm của phương trình (2).

Phương pháp giải:

-  ĐKXĐ là điều kiện để mẫu khác 0

-  Quy đồng mẫu của phương trình bằng cách phân tích nhân tử của mẫu rồi tìm mẫu thức chung từ đó ta quy đồng mẫu thức

-  Giải phương trình bậc nhất vừa thu được khi khử mẫu (bỏ mẫu), ta sẽ tìm được x tuy nhiên cần đối chiếu ĐKXĐ xem thỏa mãn không rồi mới kết luận.

Lời giải chi tiết:

a) ĐKXĐ \(x \ne 0\) và \(x \ne 3.\)

b) Quy đồng mẫu ta được \(\frac{{\left( {x + 3} \right)\left( {x - 3} \right)}}{{x\left( {x - 3} \right)}} = \frac{{\left( {x + 9} \right)x}}{{x\left( {x - 3} \right)}}\) và khử mẫu ta có: \(\left( {x - 3} \right)\left( {x + 3} \right) = x\left( {x + 9} \right)\)

c) \({x^2} - 9 = {x^2} + 9x\)

\(\begin{array}{l}{x^2} - {x^2} - 9x = 9\\ - 9x = 9\\x =  - 1\end{array}\)

Giá trị \(x =  - 1\left( {t/m} \right)\).

d) Vậy nghiệm của phương trình là \(x =  - 1.\)

LT3

Trả lời câu hỏi Luyện tập 3 trang 29 SGK Toán 9 Kết nối tri thức

Giải phương trình \(\frac{1}{{x - 1}} - \frac{{4x}}{{{x^3} - 1}} = \frac{x}{{{x^2} + x + 1}}.\)

Phương pháp giải:

Các bước giải phương trình chứa ẩn ở mẫu

-  Bước 1: Tìm ĐKXĐ

-  Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu

-  Bước 3: Giải phương trình vừa thu được

-  Bước 4: Kết luận (đối chiếu ĐKXĐ).

Lời giải chi tiết:

ĐKXĐ: \(x \ne 1.\)

Quy đồng mẫu thức, ta được

\(\frac{{1.\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{4x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{x\left( {x - 1} \right)}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}\)

Khử mẫu ta được \({x^2} + x + 1 - 4x = x\left( {x - 1} \right)\)

\(\begin{array}{l}{x^2} + x + 1 - 4x = {x^2} - x\\{x^2} - 3x - {x^2} + x =  - 1\\ - 2x =  - 1\end{array}\)

\(x = \frac{1}{2}\left( {t/m} \right).\)

Vậy nghiệm của phương trình là \(x = \frac{1}{2}.\)


Cùng chủ đề:

Giải mục 2 trang 6, 7, 8 SGK Toán 9 tập 2 - Kết nối tri thức
Giải mục 2 trang 9 SGK Toán 9 tập 1 - Kết nối tri thức
Giải mục 2 trang 12, 13 SGK Toán 9 tập 2 - Kết nối tri thức
Giải mục 2 trang 13, 14 SGK Toán 9 tập 1 - Kết nối tri thức
Giải mục 2 trang 22, 23 SGK Toán 9 tập 2 - Kết nối tri thức
Giải mục 2 trang 28, 29 SGK Toán 9 tập 1 - Kết nối tri thức
Giải mục 2 trang 33, 34 SGK Toán 9 tập 1 - Kết nối tri thức
Giải mục 2 trang 34, 35, 36 SGK Toán 9 tập 2 - Kết nối tri thức
Giải mục 2 trang 39, 40, 41 SGK Toán 9 tập 1 - Kết nối tri thức
Giải mục 2 trang 39, 40, 41 SGK Toán 9 tập 2 - Kết nối tri thức
Giải mục 2 trang 46, 47, 48 SGK Toán 9 tập 1 - Kết nối tri thức