Processing math: 100%

Giải mục 2 trang 29, 30, 31 SGK Toán 9 tập 1 - Cánh diều — Không quảng cáo

Toán 9 cánh diều


Giải mục 2 trang 29, 30, 31 SGK Toán 9 tập 1 - Cánh diều

So sánh: a. (5frac{1}{4}) và (5,251); b. (sqrt 5 ) và (sqrt {frac{{26}}{5}} ).

HĐ1

Trả lời câu hỏi Hoạt động 1 trang 29 SGK Toán 9 Cánh diều

Viết hệ thức biểu thị số thực a lớn hơn số thực b.

Phương pháp giải:

Sử dụng dấu " >; <; =" phù hợp để biểu diễn.

Lời giải chi tiết:

Hệ thức biểu thị số thực a lớn hơn số thực b là a>b.

LT2

Trả lời câu hỏi Luyện tập 2 trang 30 SGK Toán 9 Cánh diều

Hãy viết hai cặp bất đẳng thức cùng chiều và hai cặp bất đẳng thức ngược chiều.

Phương pháp giải:

Hai bất đẳng thức cùng dấu được gọi là hai bất đẳng thức cùng chiều.

Hai bất đẳng thức trái dấu được gọi là hai bất đẳng thức ngược chiều.

Lời giải chi tiết:

Hai cặp bất đẳng thức cùng chiều:

25>3;7>2

Hai cặp bất đẳng thức ngược chiều:

10>3;10<4

HĐ2

Trả lời câu hỏi Hoạt động 2 trang 30 SGK Toán 9 Cánh diều

Cho bất đẳng thức 15>14. Hãy so sánh hiệu 1514 và 0.

Phương pháp giải:

Tính hiệu 1514 rồi so sánh với 0.

Lời giải chi tiết:

Ta có: 1514=1>0.

LT3

Trả lời câu hỏi Luyện tập 3 trang 30 SGK Toán 9 Cánh diều

Cho a2b. Chứng minh:

a. 2a1a+2b1

b. 4b+4a5a+2b

Phương pháp giải:

Xét hiệu của từng bất đẳng thức rồi so sánh.

Lời giải chi tiết:

Do a2b nên a2b02ba0.

a. Xét hiệu: (2a1)(a+2b1)=2a1a2b+1=a2b0. Vậy 2a1a+2b1.

b. Xét hiệu: (4b+4a)(5a+2b)=4b+4a5a2b=2ba0. Vậy 4b+4a5a+2b.

HĐ3

Trả lời câu hỏi Hoạt động 3 trang 30 SGK Toán 9 Cánh diều

Cho bất đẳng thức a>b và cho số thực c.

a. Xác định dấu của hiệu: (a+c)(b+c).

b. Hãy so sánh: a+cb+c.

Phương pháp giải:

Thực hiện hiệu rồi so sánh với 0 để xác định dấu của hiệu.

Lời giải chi tiết:

a. Do a>b nên ab>0ba<0

Ta có: (a+c)(b+c)=a+cbc=ab>0. Vậy (a+c)(b+c)>0.

b. Do (a+c)(b+c)>0 nên a+c>b+c.

LT4

Trả lời câu hỏi Luyện tập 4 trang 31 SGK Toán 9 Cánh diều

Chứng minh:

a. 113>103;

b. (a1)242a với a23.

Phương pháp giải:

Sử dụng tính chất khi cộng cùng một số vàp cả hai vế của một bất đẳng thức, ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

Lời giải chi tiết:

a. Do 11>10 nên 11>10 suy ra 113>103.

Vậy 113>103

b. Do a23 nên a2+(12a)3+(12a)

hay (a1)242a

Vậy (a1)242a.

HĐ4

Trả lời câu hỏi Hoạt động 4 trang 31 SGK Toán 9 Cánh diều

Cho bất đẳng thức a>b và số thực c>0.

a. Xác định dấu của hiệu: acbc.

b. Hãy so sánh: acbc.

Phương pháp giải:

Đặt nhân tử chung của ac với bc rồi xét hiệu

Lời giải chi tiết:

a. Do a>b nên ab>0.

Ta có: acbc=(ab)c

Do ab>0,c>0 nên (ab)c>0

Vậy acbc>0.

b. Do acbc>0 nên ac>bc.

LT5

Trả lời câu hỏi Luyện tập 5 trang 31 SGK Toán 9 Cánh diều

Cho ab. Chứng minh: 5b25a2.

Phương pháp giải:

Khi nhân cả hai vế của bất đẳng thức với cùng một số dương, ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

Lời giải chi tiết:

Do ab nên 5a5b. Vậy 5a25b2 hay 5b25a2.

HĐ5

Trả lời câu hỏi Hoạt động 5 trang 32 SGK Toán 9 Cánh diều

Cho bất đẳng thức a>b và số thực c<0.

a. Xác định dấu của hiệu: acbc.

b. Hãy so sánh: acbc.

Phương pháp giải:

Đặt nhân tử chung của ac với bc rồi xét hiệu

Lời giải chi tiết:

a. Do a>b nên ab>0.

Ta có: acbc=(ab)c

Do ab>0,c<0 nên (ab)c<0

Vậy acbc<0.

b. Do acbc<0 nên ac<bc.

LT6

Trả lời câu hỏi Luyện tập 6 trang 32 SGK Toán 9 Cánh diều

Cho a1. Chứng minh: (a1)2a21.

Phương pháp giải:

Xét hiệu của phương trình để chứng minh

Lời giải chi tiết:

Xét hiệu:

(a1)2(a21)=a22a+1a2+1=2a+2

a1 nên

2a2

2a+22+2

2a+20

Vậy (a1)2a21.

HĐ6

Trả lời câu hỏi Hoạt động 6 trang 32 SGK Toán 9 Cánh diều

Cho các bất đẳng thức a>bb>c.

a. Xác định dấu của hiệu: ab,bc,ac.

b. Hãy so sánh: a và c.

Phương pháp giải:

Xét hiệu ac để so sánh a với c.

Lời giải chi tiết:

a. Do a>b nên ab>0

Do b>c nên bc>0.

Ta có: ab+(bc)>0 hay ac>0

b. Do ac>0 nên a>c.

LT7

Trả lời câu hỏi Luyện tập 7 trang 32 SGK Toán 9 Cánh diều

Cho a, b, c, d là các số thực dương thỏa mãn a>bc>d. Chứng minh: ac>bd.

Phương pháp giải:

Sử dụng tính chất vừa học để chứng minh.

Lời giải chi tiết:

Do a>b,c>0 nên ac>bc(1)

Do c>d,b>0 nên bc>bd(2)

Từ (1) và (2) suy ra ac>bd.


Cùng chủ đề:

Giải mục 2 trang 7, 8, 9 SGK Toán 9 tập 1 - Cánh diều
Giải mục 2 trang 16, 17 SGK Toán 9 tập 1 - Cánh diều
Giải mục 2 trang 19, 20, 21 SGK Toán 9 tập 2 - Cánh diều
Giải mục 2 trang 21, 22, 23 SGK Toán 9 tập 1 - Cánh diều
Giải mục 2 trang 26, 27 SGK Toán 9 tập 2 - Cánh diều
Giải mục 2 trang 29, 30, 31 SGK Toán 9 tập 1 - Cánh diều
Giải mục 2 trang 36, 37, 38 SGK Toán 9 tập 1 - Cánh diều
Giải mục 2 trang 36, 37, 38 SGK Toán 9 tập 2 - Cánh diều
Giải mục 2 trang 49 SGK Toán 9 tập 2 - Cánh diều
Giải mục 2 trang 50, 51 SGK Toán 9 tập 1 - Cánh diều
Giải mục 2 trang 53, 54, 55 SGK Toán 9 tập 2 - Cánh diều