Processing math: 62%

Giải mục 2 trang 79, 80 SGK Toán 8 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 8, giải toán lớp 8 kết nối tri thức với cuộc sống Bài 15. Định lí Thales trong tam giác Toán 8 kết nối tr


Giải mục 2 trang 79, 80 SGK Toán 8 tập 1 - Kết nối tri thức

Tìm các độ dài x, y trong Hình 4.6.

Luyện tập 3

Tìm các độ dài x, y trong Hình 4.6.

Phương pháp giải:

Áp dụng định lí Thalès

Lời giải chi tiết:

a) Áp dụng định lí Thalès vào ∆ABC, ta có:

AMBM=ANCN hay 6,5x=42

Suy ra x=6,5.24=3,25 (đvđd).

Vậy x = 3,25 (đvđd).

b) Ta có: PQ = PF + QF = 5 + 3,5 = 8,5 (đvđd).

Áp dụng định lí Thalès vào ∆PHQ, ta có:

PEPH=PFPQ hay 4y=58,5

Suy ra y=4.8,55=6,8 (đvđd).

Vậy y = 6,8 (đvđd)

HĐ 4

Cho ∆ABC có AB = 6 cm, AC = 9 cm. Trên cạnh AB lấy điểm B’, trên cạnh AC lấy điểm C’ sao cho AB’ = 4 cm, AC’ = 6 cm (H.4.7).

• So sánh các tỉ số ABAB và ACAC

• Vẽ đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’. Tính độ dài đoạn thẳng AC’’.

• Nhận xét gì về hai điểm C’, C’’ và hai đường thẳng B’C’, BC?

Phương pháp giải:

Áp dụng định lí Thalès vào ∆ABC

Lời giải chi tiết:

• Ta có ABAB=46=23;ACAC=69=23

Do đó ABAB=ACAC

• Đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’ nên B’C’’ // BC.

Áp dụng định lí Thalès vào ∆ABC, ta có:

ABAB=AC hay \dfrac{4}{6} = \dfrac{{AC''}}{9}

Suy ra: AC'' = \dfrac{{4.9}}{6} = 6(cm).

Vậy AC’’ = 6 cm.

• Trên cạnh AC lấy điểm C’ sao cho AC’ = 6 cm.

Đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’ nên điểm C’’ nằm trên cạnh AC sao cho AC’’ = 6 cm.

Do đó, hai điểm C’, C’’ trùng nhau.

Vì hai điểm C’, C’’ trùng nhau mà B’C’’ // BC nên B’C’ // BC.

Vận dụng

Cây cầu AB bắc qua một con sông có chiều rộng 300 m. Để đo khoảng cách giữa hai điểm C và D trên hai bờ con sông, người ta chọn một điểm E trên đường thẳng AB sao cho ba điểm E, C, D thẳng hàng. Trên mặt đất, người ta đo được AE = 400 m, EC = 500 m. Theo em, người ta tính khoảng cách giữa C và D như thế nào?

Phương pháp giải:

Hai cạnh AC và BD thuộc hai bờ của con sông nên AC // BD, áp dụng định lí Thalès

Lời giải chi tiết:

Hai cạnh AC và BD thuộc hai bờ của con sông nên AC // BD, áp dụng định lí Thalès, ta có:

\dfrac{{A{\rm{E}}}}{{AB}} = \dfrac{{CE}}{{C{\rm{D}}}} hay \dfrac{{400}}{{300}} = \dfrac{{500}}{{C{\rm{D}}}}

Suy ra C{\rm{D}} = \dfrac{{300.500}}{{400}} = 375 (m).

Vậy khoảng cách giữa C và D bằng 375 m


Cùng chủ đề:

Giải mục 2 trang 59, 60, 61 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 2 trang 61, 62 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 2 trang 65, 66 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 2 trang 69, 70, 71 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 2 trang 70, 71 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 2 trang 79, 80 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 2 trang 80, 81, 82 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 2 trang 85, 86, 87 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 2 trang 91, 92 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 2 trang 94, 95 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 2 trang 95, 96, 97 SGK Toán 8 tập 2 - Kết nối tri thức