Giải mục 5 trang 16, 17 SGK Toán 9 tập 2 - Chân trời sáng tạo
Một mảnh đất hình chữ nhật có chu vi 100 m, diện tích 576 m2. Gọi x (m) là chiều rộng của mảnh đất (0 < x < 50). Hãy lập phương trình biểu thị mối liên hệ giữa chiều rộng, chiều dài và diện tích của mảnh đất.
HĐ4
Trả lời câu hỏi Hoạt động 4 trang 16 SGK Toán 9 Chân trời sáng tạo
Một mảnh đất hình chữ nhật có chu vi 100 m, diện tích 576 m 2 .
Gọi x (m) là chiều rộng của mảnh đất (0 < x < 50).
Hãy lập phương trình biểu thị mối liên hệ giữa chiều rộng, chiều dài và diện tích của mảnh đất.
Phương pháp giải:
Đọc kĩ dữ liệu đề bài để lập phương trình.
Lời giải chi tiết:
Gọi x (m) là chiều rộng của mảnh đất (0 < x < 50).
Ta có chu vi 100 m nên chiều dài của mảnh đất là: 50 – x (m)
Mặt khác, diện tích là 576 m 2 nên ta có phương trình biểu thị mối liên hệ giữa chiều rộng, chiều dài và diện tích của mảnh đất là:
x(50 – x) = 576 suy ra – x 2 + 50x – 576 = 0.
TH6
Trả lời câu hỏi Thực hành 6 trang 17 SGK Toán 9 Chân trời sáng tạo
Một sân khấu ngoài trời có dạng hình chữ nhật, chiều dài hơn chiều rộng 2 m, độ dài đường chéo là 10 m. Tính diện tích của sân khấu đó.
Phương pháp giải:
Dựa vào để giải bài toán bằng cách lập phương trình bậc hai như sau:
B1: Lập phương trình
+ Chọn ẩn và đặt điều kiện thích hợp cho ẩn.
+ Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
+ Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
B2: Giải phương trình nói trên.
B3: Kiểm tra các nghiệm tìm được ở B2 có thỏa mãn điều kiện của ẩn hay không rồi trả lời bài toán.
Lời giải chi tiết:
Gọi x (m) là chiều rộng của sân khấu (0 < x < 10).
Suy ra chiều dài của sân khấu là: x + 2 (m)
Ta có độ dài đường chéo hình chữ nhật là 10 m nên áp dụng định lí pythagore trong tam giác vuông thuộc hình chữ nhật ta được:
\(\begin{array}{l}{x^2} + {(x + 2)^2} = {10^2}\\{x^2} + {x^2} + 4x + 4 - 100 = 0\\2{x^2} + 4x - 96 = 0\end{array}\)
Giải phương trình trên ta được: \({x_1} = 6(TM),{x_2} = - 8(L)\)
Suy ra chiều rộng của sân khấu là 6 m, chiều dài là 8 m.
Vậy diện tích của sân khấu là S = 6.8 = 48 m 2 .