Giải các hệ phương trình: a) (left{ {begin{array}{*{20}{c}}{2x + 3y = - 2}\{3x - 2y = - 3}end{array}} right.) b) (left{ {begin{array}{*{20}{c}}{3x + 5y = - 7}\{3x - 4y = 11}end{array}} right.) c) (left{ {begin{array}{*{20}{c}}{2x - 5y = - 14}\{2x + 3y = 2}end{array}} right.) d) (left{ {begin{array}{*{20}{c}}{4x + 5y = 15}\{6x - 4y = 11}end{array}} right.)
Giải các hệ phương trình: a) (left{ {begin{array}{*{20}{c}}{3x - 2y = 10}{x - frac{2}{3}y = 3frac{1}{3}}end{array}} right.) b) (left{ {begin{array}{*{20}{c}}{frac{x}{y} = frac{2}{3}}{x + y + 10 = 0}end{array}} right.) c) (left{ {begin{array}{*{20}{c}}{x - sqrt 3 y = 0}{sqrt 3 x - 2y = 2}end{array}} right.) d) (left{ {begin{array}{*{20}{c}}{sqrt 3 x - sqrt 5 y = 2}{sqrt 5 x - 3sqrt 3 y = 2sqrt {15} }end{array}} right.)
Xác định a, b để đồ thị hàm số y = ax + b đi qua hai điểm A và B trong mỗi trường hợp sau: a) A(1;1) và B(3;7); b) A(2;1) và B(4; -3).
Trong tháng 9, hai tổ sản xuất được 1100 chi tiết máy. Sang tháng 10, tổ Một sản xuất vượt mức 15%, tổ Hai sản xuất vượt mức 20% so với tháng 9, do đó tháng 10 hai tổ sản xuất được 1295 chi tiết máy. Hỏi trong tháng 9 mỗi tổ sản xuất được bao nhiêu chi tiết máy?
Một ô tô di chuyển trên quãng đường AB với tốc dộ 60 km/h, rồi tiếp tục di chuyển trên quãng đường BC với tốc độ 55 km/h. Biết tổng chiều dài quãng đường AB và BC là 200 km và thời gian ô tô đi hết quãng đường AB ít hơn thời gian đi hết quãng đường BC là 30 phút. Tính thời gian ô tô di chuyển hết mỗi quãng đường.
Một mảnh vườn hình chữ nhật có chu vi 360 m. Biết chiều dài của mảnh vườn bằng (frac{5}{4}) lần chiều rộng. Tính chiều dài và chiều rộng của mảnh vườn.
Để tổ chức tham quan khu di tích Bến Nhà Rồng (Thành phố Hồ Chí Minh) cho 195 người gồm học sinh khối 9 và giáo viên phụ trách, nhà trường đã thuê 5 chiếc xe gồm hai loại: loại 45 chỗ và loại 30 chỗ. Hỏi nhà trường cần thuê bao nhiêu xe mỗi loại để chở hết số người đó? (Biết rằng trường mong muốn các xe không còn chỗ trống.)
Một vật là hợp kim của đồng và kẽm có khối lượng 124 g và thể tích 15 cm3 . Tính xem trong đó có bao nhiêu gam đồng và bao nhiêu gam kẽm, biết rằng cứ 89 g đồng thì có thể tích 10 cm3 và 7 gam kẽm có thể tích là 1 cm3.