Từ xa xưa, con người đã cần đo đạc các khoảng cách mà không thể trực tiếp đo được. Chẳng hạn, để đo khoảng cách từ vị trí A trên bờ biển tới một hòn đảo (hay con tàu,...) trên biển, người xưa đã tìm ra một cách đo khoảng cách đó như sau:
Cho tam giác ABC có AB = c, Ac = b, BC = a. Viết công thức tính cos A. Viết công thức định lí sin cho tam giác ABC.
Cho tam giác ABC có AB = 12; B = 60; C = 45. Tính diện tích của tam giác ABC. Cho tam giác ABC có BC = a, AC = b, AB =c và diện tích là S. (Hình 24).
Từ trên nóc của một tòa nhà cao 18,5 m, bạn Nam quan sát một cái cây cách tòa nhà 30 m và dùng giác kế đo được góc lệch giữa phương quan sát gốc cây và phương nằm ngang là
Cho tam giác ABC có BC = 12,CA = 15,C = 120 Tính: a) Độ dài cạnh AB. b) Số đo các góc A, B. c) Diện tích tam giác ABC.
Cho tam giác ABC có AB = 5,BC = 7, A = 120 Tính độ dài cạnh AC.
Cho tam giác ABC có AB = 100, B = 100, C = 45 Tính: a) Độ dài các cạnh AC, BC b) Diện tích tam giác ABC.
Cho tam giác ABC có AB = 12,AC = 15,BC = 20. Tính: a) Số đo các góc A, B, C. b) Diện tích tam giác ABC.
Tính độ dài cạnh AB trong mỗi trường hợp sau:
Để tính khoảng cách giữa hai địa điểm A và B mà ta không thể đi trực tiếp từ A đến B (hai địa điểm nằm ở hai bên bờ một hồ nước, một đầm lầy, …), người ta tiến hành như sau: Chọn một địa điểm C sao cho ta đo được các khoảng cách AC, CB và góc ACB.
Một người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một ngọn hải đăng. Góc nghiêng của phương quan sát từ các vị trí A, B tới ngọn hải đăng với đường đi của người quan sát là 45 và 75