Lý thuyết Bất phương trình bậc nhất hai ẩn - SGK Toán 10 Chân trời sáng tạo — Không quảng cáo

Toán 10, giải toán lớp 10 chân trời sáng tạo Bài 1. Bất phương trình bậc nhất hai ẩn Toán 10 Chân tr


Lý thuyết Bất phương trình bậc nhất hai ẩn - SGK Toán 10 Chân trời sáng tạo

1. Khái niệm bất phương trình bậc nhất hai ẩn 2. Nghiệm của bất phương trình bậc nhất hai ẩn 3. Biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn

1. Khái niệm bất phương trình bậc nhất hai ẩn

+) Bất phương trình bậc nhất hai ẩn x, y là BPT có một trong các dạng

\(ax + by + c \le 0\;;ax + by + c \ge 0;ax + by + c < 0;ax + by + c > 0\) trong đó a, b, c là những số cho trước, a và b không đồng thời bằng 0, x và y là các ẩn.

Ví dụ: \(2x + 3y - 10 > 0\)

2. Nghiệm của bất phương trình bậc nhất hai ẩn

+) Mỗi cặp số \(({x_0};{y_0})\) thỏa mãn \(a{x_0} + b{y_0} + c\; < 0\) được gọi là một nghiệm của BPT đã cho.

Ví dụ: cặp số \((3;5)\) là một nghiệm của BPT \(2x + 3y - 10 > 0\) vì \(2.3 + 3.5 - 10 = 11 > 0\)

+) BPT bậc nhất hai ẩn luôn có vô số nghiệm .

3. Biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn

+) Trong mặt phẳng tọa độ Oxy, tập hợp các điểm \(({x_0};{y_0})\) sao cho \(a{x_0} + b{y_0} + c < 0\) được gọi là miền nghiệm của bất phương trình \(ax + by + c < 0\).

+) Biểu diễn miền nghiệm của BPT \(ax + by + c < 0\)

Bước 1: Trên mặt phẳng Oxy, vẽ đường thẳng \(\Delta :ax + by + c = 0\).

Bước 2: Lấy một điểm \(M({x_0};{y_0})\) không thuộc \(\Delta .\) Tính \(a{x_0} + b{y_0} + c\)

Bước 3: Kết luận

- Nếu \(a{x_0} + b{y_0} + c < 0\) thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng (không kể bờ \(\Delta \)) chứa điểm \(M\).

- Nếu \(a{x_0} + b{y_0} + c > 0\) thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng (không kể bờ \(\Delta \)) không chứa điểm \(M\).

* Chú ý:

-  Nếu \(c \ne 0\) ta thường chọn \(M\) là gốc tọa độ.

-  Nếu \(c = 0\) ta thường chọn \(M\) có tọa độ \((1;0)\) hoặc \((0;1).\)


Cùng chủ đề:

Giải toán 10 bài tập cuối chương V trang 102, 103 Chân trời sáng tạo
Giải toán 10 bài tập cuối chương VI trang 126, 127 Chân trời sáng tạo
Giải toán 10 bài tập cuối chương VII trang 18 Chân trời sáng tạo
Giải toán 10 bài tập cuối chương VIII trang 36 Chân trời sáng tạo
Giải toán 10 bài tập cuối chương X trang 86 Chân trời sáng tạo
Lý thuyết Bất phương trình bậc nhất hai ẩn - SGK Toán 10 Chân trời sáng tạo
Lý thuyết Các phép toán trên tập hợp - SGK Toán 10 Chân trời sáng tạo
Lý thuyết Các số đặc trưng đo mức độ phân tán của mẫu số liệu - SGK Toán 10 CTST
Lý thuyết Các số đặc trưng đo xu thế trung tâm của mẫu số liệu - SGK Toán 10 CTST
Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 độ SGK Toán 10 - CTST
Lý thuyết Giải tam giác và ứng dụng thực tế