Lý thuyết Biểu thức tọa độ của các phép toán vecto Toán 12 Kết nối tri thức — Không quảng cáo

Toán 12 Kết nối tri thức


Lý thuyết Biểu thức tọa độ của các phép toán vecto Toán 12 Kết nối tri thức

1. Biểu thức tọa độ của phép cộng hai vecto, phép trừ hai vecto, phép nhân một số với một vecto

1. Biểu thức tọa độ của phép cộng hai vecto, phép trừ hai vecto, phép nhân một số với một vecto

Các phép toán vecto cơ bản

Trong không gian Oxyz, cho hai vecto \(\overrightarrow a  = (x;y;z)\) và \(\overrightarrow b  = (x';y';z')\). Ta có:

\(\overrightarrow a  + \overrightarrow b  = (x + x';y + y';z + z')\)

\(\overrightarrow a  - \overrightarrow b  = (x - x';y - y';z - z')\)

\(k\overrightarrow a  = (kx;ky;kz)\) với k là một số thực

Công thức tính tọa độ trung điểm đoạn thẳng và trọng tâm tam giác

Trong không gian Oxyz, cho ba điểm không thẳng hàng \[A({x_A};{y_A};{z_A}),B({x_B};{y_B};{z_B}),C({x_C};{y_C};{z_C})\]. Khi đó:

Tọa độ trung điểm của đoạn thẳng AB là \[\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\]

Tọa độ trọng tâm tam giác ABC là \[\left( {\frac{{{x_A} + {x_B} + {x_C}}}{2};\frac{{{y_A} + {y_B} + {y_C}}}{2};\frac{{{z_A} + {z_B} + {z_C}}}{2}} \right)\]

2. Biểu thức tọa độ của tích vô hướng

Trong không gian Oxyz, tích vô hướng của hai vecto \(\overrightarrow a  = (x;y;z)\) và \(\overrightarrow b  = (x';y';z')\) được xác định bởi công thức \(\overrightarrow a  \cdot \overrightarrow b  = xx' + yy' + zz'\)

3. Vận dụng tọa độ của vecto trong một số bài toán có liên quan đến thực tiễn

Ví dụ: Trong không gian với một hệ trục cho trước (đơn vị đo km), ra đa phát hiện một chiếc máy bay di chuyển với vận tốc và hướng không đổi từ điểm A(800;500;7) đến điểm B (940;550;8) trong 10 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là gì?

Giải

Gọi C(x;y;z) là vị trí của máy bay sau 5 phút tiếp theo. Vì hướng của máy bay không đổi nên \(\overrightarrow {AB} \) và \(\overrightarrow {BC} \) cùng hướng. Do vận tốc bay không đổi và thời gian bay từ A đến B gấp đôi thời gian bay từ B đến C nên AB = 2 BC

Do đó, \[\overrightarrow {BC}  = \frac{1}{2}\overrightarrow {AB}  = \left( {\frac{{940 - 800}}{2};\frac{{550 - 500}}{2};\frac{{8 - 7}}{2}} \right) = \left( {70;25;0,5} \right)\]

Mặt khác,  nên \(\left\{ \begin{array}{l}x - 940 = 70\\y - 550 = 25\\z - 8 = 0,5\end{array} \right.\)

Từ đó \(\left\{ \begin{array}{l}x = 1010\\y = 575\\z = 8,5\end{array} \right.\) và vì vậy C(1010;575;8,5)

Vậy tọa độ của máy bay sau 5 phút tiếp theo là (1010;575;8,5)


Cùng chủ đề:

Giải toán 12 bài 16 trang 50,51,52 Kết nối tri thức
Giải toán 12 bài 18 trang 65,66,67 Chân trời sáng tạo
Giải toán 12 bài 19 trang 72,73,74 Kết nối tri thức
Giải toán 12 bài Bài tập cuối chương 5 trang 61,62,63 Chân trời sáng tạo
Giải toán 12 Độ dài gang tay (Gang tay của bạn dài bao nhiêu?) trang 94 Kết nối tri thức
Lý thuyết Biểu thức tọa độ của các phép toán vecto Toán 12 Kết nối tri thức
Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
Lý thuyết Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Toán 12 Kết nối tri thức
Lý thuyết Hệ trục tọa độ trong không gian Toán 12 Kết nối tri thức
Lý thuyết Khảo sát sự biến thiên và vẽ đồ thị của hàm số Toán 12 Kết nối tri thức