Lý thuyết Điểm, đường thẳng và mặt phẳng trong không gian - SGK Toán 11 Chân trời sáng tạo
1. Mặt phẳng
1. Mặt phẳng
Hình ảnh mặt phẳng trong thực tiễn
- Biểu diễn một mặt phẳng: Người ta thường biểu diễn mặt phẳng bằng một hình bình hành.
- Để kí hiệu mặt phẳng ta dùng chữ cái in hoa đặt trong dấu ngoặc ( ). Mặt phẳng (P) còn được viết là mp(P) hay (P).
* Điểm thuộc mặt phẳng
- Điểm A thuộc mặt phẳng (P) thì ta nói A nằm trên (P) hay (P) chứa A, ta kí hiệu \(A \in (P)\)
- Điểm B không thuộc mặt phẳng (P) thì ta nói B nằm ngoài (P) hay (P) không chứa B, ta kí hiệu \(B \notin (P)\).
* Biểu diễn các hình lên một mặt phẳng
- Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng.
- Hình biểu diễn của hai đường thẳng song song là 2 đường thẳng song song, của 2 đường thẳng cắt nhau là 2 đường thẳng cắt nhau.
- Hình biểu diễn giữ nguyên quan hệ liên thuộc giữa điểm và đường thẳng.
- Dùng nét liền để biểu diễn cho đường nhìn thấy và nét đứt đoạn để biểu diễn cho đường bị che khuất.
2. Các tính chất thừa nhận của hình học không gian
- Có một và chỉ một đường thẳng đi qua hai điểm phân biệt cho trước.
- Có một và chỉ một mặt phẳng đi qua 3 điểm không thẳng hàng.
- Nếu một đường thẳng đi qua hai điểm phân biệt của một mặt phẳng thì mọi điểm của đường thẳng đều nằm trong mặt phẳng đó.
- Tồn tại 4 điểm không cùng thuộc một mặt phẳng.
- Nếu mọi điểm của đường thẳng d đều thuộc mặt phẳng (P) thì ta nói d nằm trong (P) hoặc (P) chứa d. Kí hiệu \(d \subset (P)\) hoặc \((P) \supset d\).
- Nếu hai mặt phẳng phân biệt có điểm chung thì các điểm chung của hai mặt phẳng là một đường thẳng đi qua điểm chung đó. Đường thẳng đó được gọi là giao tuyến, kí hiệu \(d = (\alpha ) \cap (\beta )\).
- Trên mỗi mặt phẳng, tất cả các kết quả đã biết trong hình học phẳng đều đúng.
3. Cách xác định mặt phẳng
- Một mặt phẳng hoàn toàn được xác định khi biết nó chứa 3 điểm không thẳng hàng.
- Một mặt phẳng được hoàn toàn xác định khi biết nó đi qua một đường thẳng và một điểm không thuộc đường thẳng đó.
- Một mặt phẳng được hoàn toàn xác định nếu biết nó chứa hai đường thẳng cắt nhau.
4. Hình chóp và hình tứ diện
- Hình chóp
- Cho đa giác lồi \({A_1}{A_2}...{A_n}\) nằm trong mặt phẳng \((\alpha )\) và một điểm S không thuộc \((\alpha )\). Nối S với các đỉnh \({A_1},{A_2},...,{A_n}\)để được n tam giác \(S{A_1}{A_2},S{A_2}{A_3},...,S{A_n}{A_1}\). Hình tạo bởi n tam giác \(S{A_1}{A_2},S{A_2}{A_3},...,S{A_n}{A_1}\)và đa giác \({A_1}{A_2}...{A_n}\)được gọi là hình chóp và kí hiệu là \(S.{A_1}{A_2}...{A_n}\).
- Trong hình chóp \(S.{A_1}{A_2}...{A_n}\):
+ Điểm S được gọi là đỉnh.
+ Đa giác\({A_1}{A_2}...{A_n}\) được gọi là mặt đáy.
+ Các tam giác \(S{A_1}{A_2},S{A_2}{A_3},...,S{A_n}{A_1}\)được gọi là các mặt bên
+ Các cạnh \(S{A_1},S{A_2},...,S{A_n}\)được gọi là cạnh bên; các cạnh\({A_1}{A_2},{A_2}{A_3}...,{A_n}{A_1}\) được gọi là các cạnh đáy.
* Nếu đáy của hình chóp là một tam giác, tứ giác, ngũ giác,…thì hình chóp tương ứng gọi là hình chóp tam giác, hình chóp tứ giác, hình chóp ngũ giác,…
- Hình tứ diện
Cho 4 điểm A, B, C, D không đồng phẳng. Hình gồm 4 tam giác ABC, ABD, ACD và BCD được gọi là hình tứ diện (hay tứ diện ), kí hiệu là ABCD.
Trong đó, các điểm A, B, C, D được gọi các đỉnh của tứ diện, các đoạn thẳng AB, BC, CD, DA, BD,AC được gọi là cạnh của tứ diện; các tam giác ABC, ABD, ACD và BCD gọi là mặt của tứ diện.
Hai cạnh không có đỉnh chung được gọi là hai cạnh đối diện , đỉnh không nằm trên một mặt gọi là đỉnh đối diện với mặt đó.