Processing math: 12%

Lý thuyết Đạo hàm - Toán 11 Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 1. Đạo hàm Toán 11 Chân trời sáng tạo


Lý thuyết Đạo hàm - Toán 11 Chân trời sáng tạo

1. Đạo hàm Cho hàm số y = f(x) xác định trên khoảng (a;b) và điểm x0(a;b).

1. Đạo hàm

Cho hàm số y = f(x) xác định trên khoảng (a;b) và điểm x0(a;b).

Nếu tồn tại giới hạn (hữu hạn)

lim

thì giới hạn đó được gọi là đạo hàm của f(x) tại điểm {x_0}, kí hiệu là f'\left( {{x_0}} \right) hoặc y'\left( {{x_0}} \right).

Vậy:

f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}.

Chú ý:

- Cho hàm số y = f(x) xác định trên khoảng (a; b). Nếu hàm số này có đạo hàm tại mọi điểm x \in \left( {a;b} \right) thì ta nói nó có đạo hàm trên khoảng (a; b), kí hiệu y’ hoặc f’(x).

- Cho hàm số y = f(x) xác định trên khoảng (a; b), có đạo hàm tại {x_0} \in \left( {a;b} \right).

a) Đại lượng \Delta x = x - {x_0} gọi là số gia của biến tại {x_0}. Đại lượng y = f\left( x \right) - f\left( {{x_0}} \right) gọi là số gia tương ứng của hàm số. Khi đó, x = {x_0} + \Delta x

f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}}.

b) Tỉ số \frac{{\Delta y}}{{\Delta x}} biểu thị tốc độ thay đổi trung bình của đại lượng y theo đại lượng x trong khoảng từ {x_0} đến {x_0} + \Delta x; còn f'\left( {{x_0}} \right) biểu thị tốc độ thay đổi (tức thời) của đại lượng y theo đại lượng x tại điểm {x_0}.

2. Ý nghĩa vật lí của đạo hàm

- Nếu hàm số s = f(t) biểu thị quãng đường di chuyển của vật theo thời gian t thì f'\left( {{t_0}} \right) biểu thị tốc độ tức thời của chuyển động tại thời điểm {t_0}.

- Nếu hàm số T = f(t) biểu thị nhiệt độ T theo thời gian t thì f'\left( {{t_0}} \right) biểu thị tốc độ thay đổi nhiệt độ theo thời gian tại thời điểm {t_0}.

3. Ý nghĩa hình học của đạo hàm

Đạo hàm của hàm số y = f\left( x \right) tại điểm {x_0} là hệ số góc của tiếp tuyến {M_0}T với đồ thị (C) của hàm số tại điểm {M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right).

Tiếp tuyến {M_0}T có phương trình là y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right).


Cùng chủ đề:

Lý thuyết Phép tính lũy thừa - Toán 11 Chân trời sáng tạo
Lý thuyết Phương trình lượng giác cơ bản - SGK Toán 11 Chân trời sáng tạo
Lý thuyết Phương trình, bất phương trình mũ và lôgarit - Toán 11 Chân trời sáng tạo
Lý thuyết Số trung bình và mốt của mẫu số liệu ghép nhóm - SGK Toán 11 Chân trời sáng tạo
Lý thuyết Trung vị và tứ phân vị của mẫu số liệu ghép nhóm - SGK Toán 11 Chân trời sáng tạo
Lý thuyết Đạo hàm - Toán 11 Chân trời sáng tạo
Lý thuyết Điểm, đường thẳng và mặt phẳng trong không gian - SGK Toán 11 Chân trời sáng tạo
Lý thuyết Đường thẳng và mặt phẳng song song - SGK Toán 11 Chân trời sáng tạo
Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
Toán 11, giải toán lớp 11 chân trời sáng tạo