Lý thuyết Hình trụ Toán 9 Chân trời sáng tạo — Không quảng cáo

Toán 9 chân trời sáng tạo


Lý thuyết Hình trụ Toán 9 Chân trời sáng tạo

1. Hình trụ Định nghĩa Khi quay hình chữ nhật AA'O'O một vòng quanh cạnh OO' cố định ta được một hình trụ. − Cạnh OA, O′A′ quét thành hai hình tròn có cùng bán kính gọi là hai đáy của hình trụ; bán kính của đáy gọi là bán kính đáy của hình trụ. – Cạnh AA′ quét thành mặt xung quanh của hình trụ, mỗi vị trí của AA' được coi là một đường sinh. – Độ dài đoạn OO' gọi là chiều cao của hình trụ. Các đường sinh có độ dài bằng nhau và bằng chiều cao của hình trụ.

1. Hình trụ

Định nghĩa

Khi quay hình chữ nhật AA'O'O một vòng quanh cạnh OO' cố định ta được một hình trụ.

− Cạnh OA, O′A′ quét thành hai hình tròn có cùng bán kính gọi là hai đáy của hình trụ; bán kính của đáy gọi là bán kính đáy của hình trụ.

– Cạnh AA′ quét thành mặt xung quanh của hình trụ, mỗi vị trí của AA' được coi là một đường sinh.

– Độ dài đoạn OO' gọi là chiều cao của hình trụ. Các đường sinh có độ dài bằng nhau và bằng chiều cao của hình trụ.

Ví dụ:

Hình trụ trên có:

+ r là bán kính đáy;

+ AA’ là đường sinh;

+ h là độ dài đường sinh và là chiều cao của hình trụ đó.

2. Diện tích xung quanh của hình trụ

Diện tích xung quanh của hình trụ

Diện tích xung quanh \({S_{xq}}\) của hình trụ có bán kính đáy r và chiều cao h là:

\({S_{xq}} = 2\pi rh\).

Diện tích toàn phần của hình trụ

Diện tích toàn phần \({S_{tp}}\) của hình trụ có bán kính đáy r và chiều cao h là:

\({S_{tp}} = {S_{xq}} + 2S = 2\pi rh + 2\pi {r^2}\) (S là diện tích đáy của hình trụ).

Ví dụ:

Diện tích xung quanh của hình trụ là:

\({S_{xq}} = 2\pi rh = 2\pi .3.10 = 60\pi \left( {c{m^2}} \right)\)

3. Thể tích của hình trụ

Thể tích V của hình trụ có bán kính đáy r và chiều cao h là:

\(V = S.h = \pi {r^2}h\) (S là diện tích đáy của hình trụ).

Ví dụ:

Diện tích đáy là:

\(S = \pi {r^2} = \pi {.3^2} = 9\pi \left( {c{m^2}} \right)\)

Thể tích của hình trụ là:

\(V = S.h = 9\pi .10 = 90\pi \left( {c{m^3}} \right)\)


Cùng chủ đề:

Lý thuyết Hàm số y = ax² (a ≠ 0) Toán 9 Chân trời sáng tạo
Lý thuyết Hệ thức giữa cạnh và góc của tam giác vuông Toán 9 Chân trời sáng tạo
Lý thuyết Hình cầu Toán 9 Chân trời sáng tạo
Lý thuyết Hình nón Toán 9 Chân trời sáng tạo
Lý thuyết Hình quạt tròn và hình vành khuyên Toán 9 Chân trời sáng tạo
Lý thuyết Hình trụ Toán 9 Chân trời sáng tạo
Lý thuyết Không gian mẫu và biến cố Toán 9 Chân trời sáng tạo
Lý thuyết Phương trình bậc hai một ẩn Toán 9 Chân trời sáng tạo
Lý thuyết Phương trình bậc nhất hai ẩn và hệ hai phương trình bậc nhất hai ẩn Toán 9 Chân trời sáng tạo
Lý thuyết Phương trình quy về phương trình bậc nhất một ẩn Toán 9 Chân trời sáng tạo
Lý thuyết Tiếp tuyến của đường tròn Toán 9 Chân trời sáng tạo