Lý thuyết Tích phân Toán 12 Chân trời sáng tạo — Không quảng cáo

Toán 12 Chân trời sáng tạo


Lý thuyết Tích phân Toán 12 Chân trời sáng tạo

1. Diện tích hình thang cong

1. Diện tích hình thang cong

Nếu hàm số f(x) liên tục và không âm trên đoạn \(\left[ {a;b} \right]\), thì diện tích S của hình thang cong giới hạn bởi đồ thị y = f(x), trục hoành và hai đường thẳng x = a, x = b là S = F(b) – F(a), trong đó F(x) là một nguyên hàm của hàm số f(x) trên \(\left[ {a;b} \right]\).

2. Khái niệm tích phân

Cho hàm số f(x) liên tục trên đoạn \(\left[ {a;b} \right]\). Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn \(\left[ {a;b} \right]\) thì hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là \(\int\limits_a^b {f(x)dx} \).

Chú ý:

a) Trong trường hợp a = b hoặc a > b, ta quy ước

\(\)\(\int\limits_a^a {f(x)dx = 0} \) và \(\int\limits_a^b {f(x)dx}  =  - \int\limits_b^a {f(x)dx} \)

b) Người ta chứng minh được, tích phân chỉ phụ thuộc vào hàm số f và các cận a, b mà không phụ thuộc vào biến số x hay t, nghĩa là \(\int\limits_a^b {f(x)dx = \int\limits_a^b {f(t)dt} } \)

c) Ý nghĩa hình học của tích phân: Nếu hàm số f(x) liên tục và không âm trên đoạn \(\left[ {a;b} \right]\), thì tích phân \(\int\limits_a^b {f(x)dx} \) là diện tích S của hình thang cong giới hạn bởi đồ thị y = f(x), trục hoành và hai đường thẳng x = a, x = b

3. Tính chất của tích phân

+ \(\int\limits_a^b {kf(x)dx = k\int\limits_a^b {f(x)dx} } \) (k là hằng số)

+ \(\int\limits_a^b {\left[ {f(x) + g(x)} \right]} dx = \int\limits_a^b {f(x)dx + \int\limits_a^b {g(x)dx} } \)

+ \(\int\limits_a^b {\left[ {f(x) - g(x)} \right]} dx = \int\limits_a^b {f(x)dx - \int\limits_a^b {g(x)dx} } \)

+ \(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx + \int\limits_c^b {f(x)dx} } } \) (a < c < b)


Cùng chủ đề:

Lý thuyết Giá trị lớn nhất, giá trị nhỏ nhất của hàm số Toán 12 Chân trời sáng tạo
Lý thuyết Khảo sát và vẽ đồ thị một số hàm số cơ bản Toán 12 Chân trời sáng tạo
Lý thuyết Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm Toán 12 Chân trời sáng tạo
Lý thuyết Nguyên hàm Toán 12 Chân trời sáng tạo
Lý thuyết Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm Toán 12 Chân trời sáng tạo
Lý thuyết Tích phân Toán 12 Chân trời sáng tạo
Lý thuyết Tính đơn điệu và cực trị của hàm số Toán 12 Chân trời sáng tạo
Lý thuyết Tọa độ của vecto trong không gian Toán 12 Chân trời sáng tạo
Lý thuyết Vecto và các phép toán trong không gian Toán 12 Chân trời sáng tạo
Lý thuyết Đường tiệm cận của đồ thị hàm số Toán 12 Chân trời sáng tạo
Toán 12 Chân trời sáng tạo