Loading [MathJax]/jax/output/CommonHTML/jax.js

Lý thuyết Tính đơn điệu và cực trị của hàm số Toán 12 Chân trời sáng tạo — Không quảng cáo

Toán 12 Chân trời sáng tạo


Lý thuyết Tính đơn điệu và cực trị của hàm số Toán 12 Chân trời sáng tạo

Bài 1. Tính đơn điệu và cực trị của hàm số 1. Tính đơn điệu của hàm số

1. Tính đơn điệu của hàm số

Định lý 1

Cho hàm số y = f(x) có đạo hàm trên K

  • Nếu f’(x) > 0 với mọi x thuộc K thì hàm số f(x) đồng biến trên K.
  • Nếu f’(x) < 0 với mọi x thuộc K thì hàm số f(x) nghịch biến trên K.

Chú ý:

a) Nếu hàm số y = f(x) có đạo hàm trên K, f’(x)  0 với mọi x thuộc K và f’(x) = 0 chỉ tại một số hữa hạn điểm của K thì hàm số f(x) đồng biến trên K.

b) Nếu hàm số y = f(x) có đạo hàm trên K, f’(x)  0 với mọi x thuộc K và f’(x) = 0 chỉ tại một số hữa hạn điểm của K thì hàm số f(x) nghịch biến trên K.

c) Nếu f’(x) = 0 với mọi x thuộc K thì hàm số không đổi trên K.

2. Cực trị của hàm số

Khái niệm cực trị của hàm số

Cho hàm số y = f(x) liên tục trên tập KR, trong đó K là một khoảng, đoạn hoặc nửa khoảng và x0K,x1K

  • x0 được gọi là một điểm cực đại của hàm số đã cho nếu tồn tại một khoảng (a;b) chứa điểm x0 sao cho (a;b) K và f(x)<f(x0) với mọi x(a;b)xx0. Khi đó, f(x0) được gọi là giá trị cực đại của hàm số đã cho, kí hiệu là fCĐ
  • x1 được gọi là một điểm cực tiểu của hàm số đã cho nếu tồn tại một khoảng (a;b) chứa điểm x0 sao cho (c;d) K và f(x)>f(x1) với mọi x(c;d)xx1. Khi đó, f(x1) được gọi là giá trị cực đại của hàm số đã cho, kí hiệu là fCT
  • Điểm cực đại và điểm cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại và giá trị cực tiểu được gọi chung là giá trị cực trị (hay cực trị)

Định lý

Giả sử hàm số y = f(x) liên tục trên khoảng (a;b) chứa điểm x0 và có đạo hàm trên các khoảng (a;x0) (x0;b) . Khi đó:

a) Nếu f’(x) < 0 với mọi x(a;x0) và f’(x) > 0 với mọi x(x0;b) thì hàm số f(x) đạt cực tiểu tại điểm x0

b) Nếu f’(x) > 0 với mọi x(a;x0) và f’(x) < 0 với mọi x(x0;b) thì hàm số f(x) đạt cực tiểu tại điểm x0


Cùng chủ đề:

Lý thuyết Khảo sát và vẽ đồ thị một số hàm số cơ bản Toán 12 Chân trời sáng tạo
Lý thuyết Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm Toán 12 Chân trời sáng tạo
Lý thuyết Nguyên hàm Toán 12 Chân trời sáng tạo
Lý thuyết Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm Toán 12 Chân trời sáng tạo
Lý thuyết Tích phân Toán 12 Chân trời sáng tạo
Lý thuyết Tính đơn điệu và cực trị của hàm số Toán 12 Chân trời sáng tạo
Lý thuyết Tọa độ của vecto trong không gian Toán 12 Chân trời sáng tạo
Lý thuyết Vecto và các phép toán trong không gian Toán 12 Chân trời sáng tạo
Lý thuyết Đường tiệm cận của đồ thị hàm số Toán 12 Chân trời sáng tạo
Toán 12 Chân trời sáng tạo