Bài 1 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 1. Điểm, đường thẳng và mặt phẳng trong không gian


Bài 1 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo

Cho hình chóp \(S.ABCD\), gọi \(O\) là giao điểm của \(AC\) và \(B{\rm{D}}\). Lấy \(M,N\) lần lượt thuộc các cạnh \(SA,SC\). a) Chứng minh đường thẳng \(MN\) nằm trong mặt phẳng \(\left( {SAC} \right)\). b) Chứng minh \(O\) là điểm chung của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SB{\rm{D}}} \right)\).

Đề bài

Cho hình chóp \(S.ABCD\), gọi \(O\) là giao điểm của \(AC\) và \(B{\rm{D}}\). Lấy \(M,N\) lần lượt thuộc các cạnh \(SA,SC\).

a) Chứng minh đường thẳng \(MN\) nằm trong mặt phẳng \(\left( {SAC} \right)\).

b) Chứng minh \(O\) là điểm chung của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SB{\rm{D}}} \right)\).

Phương pháp giải - Xem chi tiết

‒ Để chứng minh đường thẳng nằm trong mặt phẳng, ta chứng minh đường thẳng đó có hai điểm phân biệt nằm trong mặt phẳng.

‒ Để chứng minh một điểm nằm trong mặt phẳng, ta chứng minh điểm đó nằm trên một đường thẳng nằm trong mặt phẳng.

Lời giải chi tiết

a) Ta có:

\(\left. \begin{array}{l}M \in SA \subset \left( {SAC} \right)\\N \in SC \subset \left( {SAC} \right)\end{array} \right\} \Rightarrow MN \subset \left( {SAC} \right)\)

b) Ta có:

\(\left. \begin{array}{l}O \in AC \subset \left( {SAC} \right)\\O \in B{\rm{D}} \subset \left( {SB{\rm{D}}} \right)\end{array} \right\} \Rightarrow O \in \left( {SAC} \right) \cap \left( {SB{\rm{D}}} \right)\)


Cùng chủ đề:

Bài 1 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 1 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 1 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 1 trang 97 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 1 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 1 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 1 trang 105 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 1 trang 111 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 1 trang 119 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 1 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 1 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo