Bài 3 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài tập cuối chương 4 Toán 11 Chân trời sáng tạo


Bài 3 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo

Cho hình chóp \(S.ABCD\) có \(AC\) cắt \(B{\rm{D}}\) tại \(M\), \(AB\) cắt \(C{\rm{D}}\) tại \(N\). Trong các đường thẳng sau đây, đường nào là giao tuyến của \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\)?

Đề bài

Cho hình chóp \(S.ABCD\) có \(AC\) cắt \(B{\rm{D}}\) tại \(M\), \(AB\) cắt \(C{\rm{D}}\) tại \(N\). Trong các đường thẳng sau đây, đường nào là giao tuyến của \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\)?

A. \(SM\).

B. \(SN\).

C. \(SB\).

D. \(SC\).

Phương pháp giải - Xem chi tiết

Để tìm giao tuyến của hai mặt phẳng, ta tìm hai điểm chung phân biệt của hai mặt phẳng đó.

Lời giải chi tiết

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}S \in \left( {SAC} \right)\\S \in \left( {SB{\rm{D}}} \right)\end{array} \right\} \Rightarrow S \in \left( {SAC} \right) \cap \left( {SB{\rm{D}}} \right)\\\left. \begin{array}{l}M \in AC \subset \left( {SAC} \right)\\M \in B{\rm{D}} \subset \left( {SB{\rm{D}}} \right)\end{array} \right\} \Rightarrow M \in \left( {SAC} \right) \cap \left( {SB{\rm{D}}} \right)\end{array}\)

Vậy giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là đường thẳng \(SM\).

Chọn A.


Cùng chủ đề:

Bài 3 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 112 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 120 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 135 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 141 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 12 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 13 SGK Toán 11 tập 2 - Chân trời sáng tạo